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The Mutational Consequences of Plant Transformation
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Plant transformation is a genetic engineering tool for introducing transgenes into plant genomes. It is now being used for the
breeding of commercial crops. A central feature of transformation is insertion of the transgene into plant chromosomal DNA.
Transgene insertion is infrequently, if ever, a precise event. Mutations found at transgene insertion sites include deletions and
rearrangements of host chromosomal DNA and introduction of superfluous DNA. Insertion sites introduced using Agrobacterium
tumefaciens tend to have simpler structures but can be associated with extensive chromosomal rearrangements, while those of
particle bombardment appear invariably to be associated with deletion and extensive scrambling of inserted and chromosomal
DNA. Ancillary procedures associated with plant transformation, including tissue culture and infection with A tumefaciens, can
also introduce mutations. These genome-wide mutations can number from hundreds to many thousands per diploid genome.
Despite the fact that confidence in the safety and dependability of crop species rests significantly on their genetic integrity, the
frequency of transformation-induced mutations and their importance as potential biosafety hazards are poorly understood.

Copyright © 2006 Jonathan R. Latham et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

PLANT TRANSFORMATION

Plant transformation is the set of procedures used to intro-
duce a transgene into a plant genome. Commercially, this
is carried out by either Agrobacterium-mediated transforma-
tion: infecting plant cells with a disarmed pathogenic organ-
ism (Agrobacterium tumefaciens) containing the transgene;
or particle bombardment: bombardment of cells with metal
particles carrying the transgene. Both of these methods are
also used in research applications. The molecular mecha-
nisms by which transgenes insert into host DNA are poorly
understood [1–3].

With the exception of the model plant Arabidopsis thali-
ana, transgene insertion usually involves a tissue culture step.
Tissue culture (as used in plant transformation) induces ded-
ifferentiation of plant tissues in the presence of hormones
and antibiotics or other selective agents and allows selec-
tion and regeneration of an intact plant from a single ge-
netically modified cell containing the transgene. Once regen-
erated, transgenic crops can be incorporated into standard
plant breeding programmes.

PLANT TRANSFORMATION AS A MUTAGEN

Individual components of plant transformation are often
mutagens. T-DNA insertion (using Agrobacterium) and tis-
sue culture have both been used as such, either in plant

breeding or to identify (by disruption) functional gene se-
quences in model organisms [4–6]. Less well known is that
pathogen infection and antibiotics may also cause mutations
in plant genomes [7–9].

Perhaps the clearest evidence implicating A tumefaciens
infection as a mutagen comes from large-scale T-DNA tag-
ging experiments which use plant transformation without
tissue culture [10, 11]. In these experiments, often only one
third of the mutations identified by their phenotype are
found later to have been tagged with a T-DNA. Mutagenicity
of Agrobacterium infection provides the most likely explana-
tion for the remaining two thirds. It is not known whether
particle bombardment results in chromosomal mutations.

Primary transformants (T0 plants) emerging from plant
transformation procedures have therefore been exposed to
various known or suspected mutagens. For the following dis-
cussion, transformation-induced mutations have been sepa-
rated into two types: those introduced at the site of transgene
insertion, which we call insertion-site mutations, and those
introduced at other random locations, which are genome-
wide mutations.

INSERTION-SITE MUTATIONS RESULTING FROM
AGROBACTERIUM-MEDIATED TRANSFORMATION

Agrobacterium-mediated transformation has been used in re-
search for over 15 years and has frequently been applied to
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create commercial transgenic cultivars. A few studies have
examined unselected T-DNA insertions for chromosomal re-
arrangements and deletion of host DNA [12–14]. Only one
large-scale study has investigated the chromosomal muta-
tions created by single-copy transgene insertions, the type
of event usually selected for commercial purposes [15]. This
study is examined in detail since it is the largest and appears
to be broadly typical.

Forsbach and his colleagues studied 112 independent in-
sertions into the A thaliana genome that they had selected
by southern blotting as containing only single copies of the
transgene [15]. They found that most insertions resulted in
small deletions of plant DNA at the insertion site. However,
21% (24/112) appeared to be associated with large-scale re-
arrangement or deletion of plant chromosomal DNA. Of
these, two were confirmed as chromosomal translocations.
The rearrangements in the remaining 22 were not fully char-
acterised. Similar results were obtained for T-DNA inser-
tions into aspen, in which 7 of 10 events contained dele-
tions at the insertion site, the largest being 580 bp [14].
A survey of nine unselected T-DNA insertions in rice re-
ported that they were associated with deletion of up to 76 bp
[13].

The results of Forsbach and his colleagues are rein-
forced by T-DNA mutagenesis screens which regularly find
rearrangements and deletions of genomic DNA at T-DNA
insertion-sites in A thaliana. A 78 Kbp deletion is the largest
recorded for Agrobacterium-mediated transformation [16].
Also reported are a 1287 bp deletion [17]; a deletion of
1,980 bp [18]; and a 25 Kbp deletion [19]. More complex re-
arrangements have included a duplication of at least 40 Kbp
[20] and a reciprocal translocation and 1.4 Kbp deletion as-
sociated with the same T-DNA insertion [21]. Lastly, among
36 A thaliana embryonic mutants, five involved probable
chromosomal translocations [11]. This is by no means an ex-
haustive list of such rearrangements.

Insertion of superfluous DNA is also a consistent fea-
ture of Agrobacterium-generated insertion sites. This super-
fluous DNA may consist of extra whole or partial copies of
the transgene, vector backbone DNA, or filler DNA. Filler
DNA is DNA newly created at DNA-DNA junctions. It usu-
ally has some homology to the T-DNA or the transgene, al-
ternatively it may resemble nearby chromosomal DNA or it
may be of unknown origin [14]. For example, Forsbach and
his colleagues found that 8 of their 112 single copy trans-
gene insertions contained large segments of superfluous vec-
tor backbone DNA. The majority of the remaining trans-
genic plant lines had insertions of small (< 100 bp) seg-
ments of vector backbone or transgene DNA or DNA of un-
defined origin. Studies in rice have also shown that a high
proportion of T-DNA insertion events feature superfluous
DNA. In one study, 147 of 361 unselected loci contained
superfluous DNA [22]; in another, 53%–66% of loci con-
tained superfluous DNA [23]; and in another, 30% of all
T-DNA insertions were associated with superfluous DNA
[24].

INSERTION-SITE MUTATIONS GENERATED
BY PARTICLE BOMBARDMENT

Particle bombardment has also been used to create numerous
cultivars for research and commercial use. Most of the parti-
cle bombardment insertion events described in the scientific
literature are extremely complex and insertion of multiple
copies (often more than 40) of delivered DNA, sometimes
interspersed with fragments of plant DNA, appears to be the
norm (eg, [25–28]).

Only a handful of studies have provided detailed data
on the chromosomal mutations resulting from particle bom-
bardment insertion [29–32]. None of these have been large
scale or systematic and all chose to examine relatively “sim-
ple” insertions identified by southern blotting as contain-
ing only a single copy of the transgene. Although relatively
simple insertion events from particle bombardment are rare,
they are important because they are more likely to be relevant
to events presented for regulatory approval.

Analysis of insertion-site mutations requires DNA se-
quence analysis of large stretches of flanking DNA and a care-
ful comparison with the original target site. Without this,
deletions or rearrangements will probably not be detected.
We have found only two studies where detailed analyses (ie,
PCR, cloning and DNA sequencing) were used to charac-
terise single-copy particle bombardment insertion sites from
regenerated plants [29, 31]. Since so few studies are avail-
able, it is worth detailing their findings. One analysed the
commercialised Roundup Ready soybean insertion event 40-
3-2 [29]. In addition to the intended EPSPS (enoylpyru-
vate shikimate synthase) transgene described in the origi-
nal application for commercial approval, the authors found a
254 bp EPSPS gene fragment, a 540 bp segment of unidenti-
fied DNA, a segment of plant DNA, another 72 bp fragment
of EPSPS, and evidence for additional alterations to flanking
plant DNA [29], (USDA Application # 93-258-01p). These
insertion-site mutations were reported only after commer-
cialisation of Roundup Ready soybean insertion event 40-
3-2. Interestingly, independent analysis of another commer-
cialised event, Maize YieldGard (event Mon810), also found
evidence for previously unreported insertion-site mutations
[32]. Again, these were not characterised further.

In the most complete study of particle bombardment
loci performed to date, three insertion events (all from oat)
were sequenced [31]. One event was nonfunctional and con-
tained 296 bp comprising two noncontiguous fragments of
delivered DNA flanked by probable rearranged genomic se-
quences of approximately 300 bp, 500 bp, and 800 bp. A dele-
tion of 845 bp of chromosomal DNA was also detected at this
site. At the second, a functional locus, 18 DNA/DNA junc-
tions were detected among multiple juxtaposed sequences of
genomic and transgene DNA [31]. The authors also found
evidence for still further rearrangements which were not
analysed further. These authors also sequenced a third lo-
cus, which they had again selected as “simple.” It contained
one truncated copy of each of two codelivered plasmids “in-
terspersed with six small scrambled fragments of transgene
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and genomic DNA” as well as probable additional rearrange-
ments that were not investigated further [31].

The sequence of a functional transgene insertion site re-
sulting from particle bombardment has therefore never been
definitively compared to its undisrupted site of insertion, ei-
ther in the scientific literature or in applications submitted
to US regulators. Consequently, the minimal extent of mu-
tation possible at a functional particle bombardment inser-
tion site is unknown. Due to the small number of events
analysed (even partially), any conclusions regarding parti-
cle bombardment insertion events can only be provisional.
However, it appears that transgene integration resulting from
particle bombardment is usually or always accompanied by
substantial disruption of plant DNA and insertion of super-
fluous DNA.

Given the relative lack of research describing insertion
sites resulting from particle bombardment, it is interesting
that there is a single report of the insertion of contaminating
bacterial chromosomal DNA adjacent to a transgene [33]. It
is as yet too early to say whether insertion of contaminating
DNA is a common outcome of particle bombardment.

THE MOLECULAR CONSEQUENCES OF
TRANSGENE INSERTION

It is apparent that small and large-scale deletions, rearrange-
ments of plant DNA, and insertion of superfluous DNA are
each common occurrences at Agrobacterium-mediated trans-
gene insertion sites. Particle bombardment insertion sites,
however, appear always to be associated with genome disrup-
tion, rearrangements, and superfluous DNA.

Mutations at insertion sites have the potential to result in
inadvertent loss, acquisition, or misexpression of important
traits, in part because transgenes insert into or near func-
tional gene sequences. In the plant species most studied (A
thaliana and rice), approximately 27%–63% of T-DNA inser-
tions disrupt known gene sequences [15, 24, 34–37]. Large-
scale studies of insertion patterns of transgenes delivered by
particle bombardment have never been conducted in any
species. Deletions or rearrangements associated with trans-
gene insertion further increase the likelihood of alterations
to the plant phenotype. Among many examples, the 78 Kbp
deletion recorded in A thaliana resulted in loss of 13 genes
and disruption of two others [16]. The 1,980 bp deletion also
noted earlier resulted simultaneously in upregulation and al-
tered transcript sizes of an adjacent gene [18].

Gene disruption and deletion are not the only mecha-
nisms by which transgene insertion may affect the phenotype
of a transgenic plant. When transgene insertion is associated
with rearrangements or insertion of superfluous DNA then
juxtaposition of promoter sequences and coding fragments
may lead to sense or antisense transcripts which, similarly
to siRNAs and miRNAs, can interfere with the expression of
genes containing homologous or similar sequences [38, 39].
A naturally occurring instance of this phenomenon has been
reported in the nontransgenic rice low glutelin content muta-
tion. Here, a deletion resulted in transcription into a neigh-
bouring member of the glutelin gene family and was thought

to have caused gene silencing of the entire glutelin gene fam-
ily [40]. Obviously, the more the present scrambling is, the
higher the probability that an aberrant phenotype will result
is. Alternatively, complex insertion sites may generate aber-
rant transcripts coding for fusion proteins that can also lead
to mutant phenotypes.

Studies of transcription patterns at insertion sites are
rare. To our knowledge, only two papers describe transcrip-
tion patterns at transgene integration sites and both stud-
ied events approved for commercial release [41, 42]. Al-
though neither focussed on flanking DNA, both showed ev-
idence for aberrant transcription. At the Soybean Roundup
Ready 40-3-2 locus, transcription originating in the trans-
gene continues into scrambled DNA at the 3′ end of the lo-
cus. This is a consequence of inefficient transcription termi-
nation by the nopaline synthase transcription terminator—
termination sequence widely used in transgenic plants [42].
Rang et al predicted that the oversized transcripts detected at
the Roundup Ready locus might express fusion proteins con-
taining the EPSPS gene and the unidentified sequence flank-
ing the scrambled transgene [42]. However, they made no
attempt to detect any protein product. In the second report,
several abundant and oversized mRNA transcripts originat-
ing in the transgene were detected by Northern blotting of a
commercial virus-resistant papaya line. The origin and sig-
nificance of these aberrant viral transcripts was never inves-
tigated [41].

There are other mechanisms by which insertion-site mu-
tations may affect plant phenotypes. Sequences carried on
T-DNAs can alter the expression of neighbouring genes at
least 12 Kbp from the transgene [18, 35, 43]. Such distant ef-
fects are thought to be mediated by multiple promoters and
therefore it is plausible that scrambled or complex transgene
insertion sites that accumulate multiple promoter sequences
may also influence the expression of linked genes.

Lastly, bacterial chromosomal DNA, plasmid sequences
(bacterial origins of replication in particular), or antibiotic
resistance genes accidentally inserting adjacent to the trans-
gene may significantly enhance the probability of horizon-
tal gene transfer. Availability of sequence homology is con-
sidered one of the major obstacles to horizontal gene trans-
fer from plants to bacteria. By providing adjacent regions of
bacterial sequence homology, researchers have shown that
horizontal gene transfer from bacterial replicons to bacterial
chromosomes can be elevated 105 fold [44, 45]. Most (US ap-
proved) commercial transgenic cultivars analysed in a previ-
ous publication had insertions of superfluous bacterial DNA
at the insertion site [46].

GENOME-WIDE MUTATIONS

The second class of mutations associated with plant trans-
formation are genome-wide mutations. These are not nec-
essarily genetically linked to the transgene insertion site but
arise as a consequence of tissue culture, probably Agrobac-
terium infection and possibly particle bombardment and an-
tibiotic use [3, 10, 47, 48]. There are 5 studies in which re-
searchers have attempted to quantify mutations introduced
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throughout the plant genome during plant transformation.
These researchers used DNA polymorphism analysis (based
on RFLP, AFLP, and other PCR techniques) to sample and
compare the genomic DNA of transformed plants with that
of nontransformed control plants [49–53].

Their results are broadly consistent. They suggest that
plant transformation procedures typically introduce many
hundreds to thousands of genome-wide mutations into the
DNA of transgenic plants. For example, Labra et al [52] es-
timated that the “genomic similarity value” of control plants
was 100%, but only 96%–98% for the transgenic plants. In
other words, very extensive genetic mutation had resulted
from the plant transformation procedures. These studies
suggest that most genome-wide mutations are caused by pas-
sage through tissue culture, which in plant transformation is
used in a particularly mutagenic form [54].

Genome-wide mutations were found in all analysed
plants transformed using tissue culture and the mutations
have been shown to be heritable [55]. Even though the muta-
tions found in these studies were numerous, the analytical
techniques used may underestimate the true numbers be-
cause they are likely to miss most point mutations and small
deletions. The degree of underestimate will depend on the
precise mutation spectrum of plant transformation, which is
unknown.

UNINTENDED PHENOTYPES IN TRANSGENIC PLANTS

Both insertion-site and genome-wide mutations may result
in transgenic plants with unexpected traits. Despite the sup-
posed precision of genetic engineering, it is common knowl-
edge that large numbers of individual transgenic plants must
be produced in order to obtain one or a few plants that ex-
press the desired trait in an otherwise normal plant. Even
after selection, there are many reports of apparently nor-
mal transgenic plants exhibiting aberrant behavioural or bio-
chemical characteristics upon further analysis. These unex-
pected traits range from altered nutrient or toxin levels to
lower yields under certain environmental conditions, see ref-
erences in [46, 56, 57]. Among others are altered interactions
with soil microorganisms [58], susceptibility to pathogens
[59], altered insect resistance [60], and plant reproductive
characteristics [61]. Despite the paucity of publicly accessible
data and lack of monitoring of commercial transgenic crop
varieties, commercial (ie, approved) transgenic plants have
also been observed with unintended traits. Verified examples
include stem splitting and decreased yields in transgenic soy-
bean plants [62] and a 67-fold reduction in beta-carotene
content in a transgenic squash variety engineered for virus
resistance (USDA Application # 95-352-01).

These examples show that unexpected transformation-
induced phenotypes can affect any aspect of plant pheno-
type, including those of value or concern to humans. Fur-
thermore, the incidence of unintended phenotypes in trans-
genic plants seems to be high, indicating that plant transfor-
mation is currently not predictable. Few unexpected pheno-
types have been followed up but we propose that an impor-
tant source of unpredictability is likely to be the mutational
consequences of plant transformation.

Interestingly, phenotypes sometimes arise from the
transformation process that cannot have been caused by the
transgene because it transpired that the transgene was not
present in that particular line. Examples include the most
virus-resistant line arising from a transformation experi-
ment, and a plant giving a 7–10 fold increase in insecti-
vore mortality [51, 63]. These cases in particular suggest that
transformation-induced mutations were the cause of the un-
expected phenotype.

THE IMPLICATIONS OF TRANSFORMATION-
INDUCED MUTATIONS

Transformation-induced mutations are significant for two
reasons. Firstly, they can obscure the results of scientific ex-
periments. For example, they may generate spurious results
in metabolic engineering experiments [64] or obscure the
cause of a phenotype in T-DNA tagging experiments [18].

The second and more important significance of transfor-
mation-induced mutations is that they may affect the safety
or performance of transgenic crops intended for commercial
release.

Effects such as these are collectively termed biosafety ef-
fects. Biosafety recognises that crops are part of an exten-
sive and fragile web of ecological and human interactions.
It therefore covers a wide range of potential consequences
that crops may have, either while growing, as food or feed, or
as waste or residues. These include nontrivial effects on the
wholesomeness of food or feed, on soil processes, pollination
or other biotic interactions as well as crop failures that may
have food security, agronomic, or economic consequences.
Transformation-induced mutations have the potential to af-
fect any biosafety phenotype that is under genetic control.
The frequency with which phenotypes will occur is the chief
unknown, but in crops approved for commercial use this will
depend greatly on the extent to which applicants present, and
regulators accept, transgenic lines carrying these mutations.

CURRENT TRANSGENIC CROP
BIOSAFETY ASSESSMENTS

Biosafety risk assessments are intended to prevent crops with
hazardous traits reaching the market. Many authors how-
ever have argued that present risk assessments are flawed.
Some have criticised the concept of risk assessment based
on substantial equivalence [65], others have identified “se-
rious deficiencies in both regulatory oversight and corpo-
rate testing procedures” [66], and others have pointed out
an overreliance on assumption-based reasoning and a ten-
dency to rationalise away potential sources of harm [67].
These criticisms are primarily directed at the principal pur-
pose of current transgenic risk assessments: the detection
of known and predicted hazards resulting from the specific
transgene. However, transformation-induced mutations are
likely to have unpredictable rather than predictable effects on
the phenotype. These are even less likely to be detected than
predicted effects because regulators do not systematically
examine all potential hazards arising from each transgenic
plant.
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The above criticisms primarily concern safety assessment
of the phenotype of transgenic plants. But, despite their
biosafety implications, risk assessments typically fail to ef-
fectively examine the genetic aspects of transformation. Risk
assessments do not analyse genome-wide mutations and we
have found that assessments of flanking DNA are inade-
quate for the likely extent of genetic damage at insertion
sites [46]. As noted previously, two independent evalua-
tions of commercial transgene insertion sites have been pub-
lished [29, 32]. Both found that the respective insertion sites
were much more complex than was apparent from the data
supplied in the application for commercial release. Conse-
quently, they support the contention that complex integra-
tion patterns are common, that the insertion site analysis
accepted by the regulator was inadequate and consequently
transgenic varieties containing complex insertion sites reach
the market.

IMPROVING RISK ASSESSMENT AND ERADICATING
TRANSFORMATION-INDUCED MUTATIONS

The phenotypic consequences arising from transformation-
induced mutations may be avoided in two ways. The first
approach required is to ensure that transgenic plants are as
identical to their parent as possible. This can be achieved
by changes to transformation procedures such as (1) elimi-
nating tissue culture, (2) effective backcrossing, (3) targeted
insertion and possibly, and (4) development of alternative
transformation methods able to create insertion events with-
out superfluous DNA or chromosomal damage. Some of
these, such as transformation without tissue culture, have al-
ready been achieved in a few species (see references in [46]).
Other improvements will require research and development,
but all will require analysis to ensure that they are not them-
selves mutagenic.

The second requirement is to improve genetic analy-
sis and selection of transgenic plants. From the perspec-
tive of preventing unintended mutations, a principal de-
fect in current analyses is the inadequate examination of
transgene insertion sites [46]. We recommended that after
extended backcrossing, the transgene and extensive flank-
ing regions must be sequenced (we suggest 50 Kbp on each
side) and compared to parental DNA to ensure there are
no alterations. Insertion sites disrupting gene sequences and
those with superfluous DNA insertions, deletions or re-
arrangements should be discarded. Insertion sites that re-
sult in aberrant transcripts or altered regulation of neigh-
bouring genes should also be discarded. Current knowledge
suggests that, if rigorously applied together with the strat-
egy outlined in (1–4) above, these precautions could en-
sure that transformation-induced mutations will not impact
on biosafety. It is important to note however that current
knowledge is always provisional and also that other poten-
tial sources of risk (eg, from the transgene itself) require
their own specific risk assessment, mitigation, and monitor-
ing measures.

To retain public and institutional confidence, biosafety
decisions need to be clearly grounded in evidence. This re-
view is an attempt to determine the degree to which the

genetic consequences of transgene insertion contribute to
uncertainty and risk in transgenic plants. We conclude that
much remains to be discovered about genome-wide and
insertion-site mutations. In particular, lack of information,
especially for crop plants and particle bombardment, means
that plant transformation may be even more damaging than
is apparent from this review. Even with the limited infor-
mation currently available it is clear that plant transforma-
tion is rarely, if ever, precise and that this lack of precision
may cause many of the frequent unexpected phenotypes that
characterise plant transformation and that pose a significant
biosafety risk. It is also clear that implementation of the steps
outlined above can greatly decrease that risk.

Ultimately, it should not be forgotten that though trans-
formation-induced mutations magnify the risks of genetic
engineering, they bring no benefits and are unnecessary for
the production of transgenic crops.

ACKNOWLEDGMENTS

We thank Martha Crouch, Antje Lorch, and Michael Anto-
niou for reading a previous version of this manuscript. We
also thank the anonymous reviewers for helpful suggestions
and constructive comments.

REFERENCES

[1] Tinland B. The integration of T-DNA into plant genomes.
Trends in Plant Science. 1996;1(6):178–184.

[2] Tzfira T, Li J, Lacroix B, Citovsky V. Agrobacterium T-
DNA integration: molecules and models. Trends in Genetics.
2004;20(8):375–383.

[3] Somers DA, Makarevitch I. Transgene integration in plants:
poking or patching holes in promiscuous genomes? Current
Opinion in Biotechnology. 2004;15(2):126–131.

[4] Alonso JM, Stepanova AN, Leisse TJ, et al. Genome-wide
insertional mutagenesis of Arabidopsis thaliana. Science.
2003;301(5633):653–657.

[5] Jain SM. Tissue culture-derived variation in crop improve-
ment. Euphytica. 2001;118(2):153–166.

[6] Krysan PJ, Young JC, Sussman MR. T-DNA as an insertional
mutagen in Arabidopsis. The Plant Cell. 1999;11(12):2283–
2290.

[7] Bardini M, Labra M, Winfield M, Sala F. Antibiotic-induced
DNA methylation changes in calluses of Arabidopsis thaliana.
Plant Cell, Tissue and Organ Culture. 2003;72(2):157–162.

[8] Lucht JM, Mauch-Mani B, Steiner H-Y, Metraux J-P, Ryals J,
Hohn B. Pathogen stress increases somatic recombination fre-
quency in Arabidopsis. Nature Genetics. 2002;30(3):311–314.

[9] Madlung A, Comai L. The effect of stress on genome regula-
tion and structure. Annals of Botany. 2004;94(4):481–495.

[10] Budziszewski GJ, Lewis SP, Glover LW, et al. Arabidopsis genes
essential for seedling viability: isolation of insertional mutants
and molecular cloning. Genetics. 2001;159(4):1765–1778.

[11] Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon
ES, Meinke DW. Genetic and molecular characterization of
embryonic mutants identified following seed transforma-
tion in Arabidopsis. Molecular and General Genetics: MGG.
1993;241(5-6):504–514.

[12] Gheysen G, Van Montagu M, Zambryski P. Integration of
Agrobacterium tumefaciens transfer DNA (T-DNA) involves



6 Journal of Biomedicine and Biotechnology

rearrangements of target plant DNA sequences. Proceedings of
the National Academy of Sciences of the United States of Amer-
ica. 1987;84(17):6169–6173.

[13] Kim S-R, Lee J, Jun S-H, et al. Transgene structures in T-DNA-
inserted rice plants. Plant Molecular Biology. 2003;52(4):761–
773.

[14] Kumar S, Fladung M. Transgene integration in aspen: struc-
tures of integration sites and mechanism of T-DNA integra-
tion. The Plant Journal. 2002;31(4):543–551.

[15] Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R.
A comprehensive characterization of single-copy T-DNA in-
sertions in the Arabidopsis thaliana genome. Plant Molecular
Biology. 2003;52(1):161–176.

[16] Kaya H, Sato S, Tabata S, Kobayashi Y, Iwabuchi M, Araki
T. hosoba toge toge, a syndrome caused by a large chromoso-
mal deletion associated with a T-DNA insertion in Arabidop-
sis. Plant & Cell Physiology. 2000;41(9):1055–1066.

[17] Revenkova E, Masson J, Koncz C, Afsar K, Jakovleva L,
Paszkowski J. Involvement of Arabidopsis thaliana ribosomal
protein S27 in mRNA degradation triggered by genotoxic
stress. The EMBO Journal. 1999;18(2):490–499.

[18] Amedeo P, Habu Y, Afsar K, Mittelsten Scheid O, Paszkowski J.
Disruption of the plant gene MOM releases transcriptional si-
lencing of methylated genes. Nature. 2000;405(6783):203–206.

[19] Filleur S, Dorbe M-F, Cerezo M, et al. An Arabidopsis T-DNA
mutant affected in Nrt2 genes is impaired in nitrate uptake.
FEBS Letters. 2001;489(2-3):220–224.

[20] Tax FE, Vernon DM. T-DNA-associated duplica-
tion/translocations in Arabidopsis. Implications for mu-
tant analysis and functional genomics. Plant Physiology.
2001;126(4):1527–1538.

[21] Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D. Ma-
jor chromosomal rearrangements induced by T-DNA trans-
formation in Arabidopsis. Genetics. 1998;149(2):641–650.

[22] Sha Y, Li S, Pei Z, Luo L, Tian Y, He C. Generation and flanking
sequence analysis of a rice T-DNA tagged population. Theoret-
ical and Applied Genetics. 2004;108(2):306–314.

[23] Afolabi AS, Worland B, Snape JW, Vain P. A large-scale study of
rice plants transformed with different T-DNAs provides new
insights into locus composition and T-DNA linkage config-
urations. Theoretical and Applied Genetics. 2004;109(4):815–
826.

[24] Chen S, Jin W, Wang M, et al. Distribution and characteriza-
tion of over 1000 T-DNA tags in rice genome. The Plant Jour-
nal. 2003;36(1):105–113.

[25] Pawlowski WP, Somers DA. Transgenic DNA integrated into
the oat genome is frequently interspersed by host DNA. Pro-
ceedings of the National Academy of Sciences of the United States
of America. 1998;95(21):12106–12110.

[26] Uthayakumaran S, Lukow OM, Jordan MC, Cloutier S. Devel-
opment of genetically modified wheat to assess its dough func-
tional properties. Molecular Breeding. 2003;11(4):249–258.

[27] Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Chris-
tou P. Transgene integration, organization and interaction in
plants. Plant Molecular Biology. 2003;52(2):247–258.

[28] Jackson SA, Zhang P, Chen WP, et al. High-resolution
structural analysis of biolistic transgene integration into
the genome of wheat. Theoretical and Applied Genetics.
2001;103(1):56–62.

[29] Windels P, Taverniers I, Depicker A, Van Bockstaele E,
De Loose M. Characterisation of the Roundup Ready
soybean insert. European Food Research and Technology.
2001;213(2):107–112.

[30] Shimizu K, Takahashi M, Goshima N, Kawakami S, Irifune K,
Morikawa H. Presence of an SAR-like sequence in junction re-
gions between an introduced transgene and genomic DNA of
cultured tobacco cells: its effect on transformation frequency.
The Plant Journal. 2001;26(4):375–384.

[31] Makarevitch I, Svitashev SK, Somers DA. Complete se-
quence analysis of transgene loci from plants transformed
via microprojectile bombardment. Plant Molecular Biology.
2003;52(2):421–432.

[32] Hernández M, Pla M, Esteve T, Prat S, Puigdomènech P,
Ferrando A. A specific real-time quantitative PCR detec-
tion system for event MON810 in maize YieldGard based
on the 3′-transgene integration sequence. Transgenic Research.
2003;12(2):179–189.
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