Agriculture and climate change: Real problems, false solutions

Preliminary report by Econexus, Biofuelwatch, Grupo de Reflexion Rural and NOAH - Friends of the Earth Denmark

by Helena Paul, Almuth Ernsting, Stella Semino, Susanne Gura & Antje Lorch

September 2009

This is an updated¹ draft version of a report whose final version will be published before the Climate Change Conference COP15 in Copenhagen, December 2009

Contact in Bangkok:	Susanne Gura	mobile: +49 177 669 1400	email: gura@dinse.net
Contact in the UK:	Helena Paul	phone: +44 207 431 4357	email:h.paul@econexus.info
	Almuth Ernsting	phone: +44 122 432 4797	email: almuth@ernsting.wanadoo.co.uk

Online at http://www.econexus.info

Table of Contents

Executive Summary	2
1. Introduction	4
2. Where we have got to in negotiations?	7
3. Carbon Trading Proposals for Agriculture	8
4. Does no-till agriculture reduce carbon emissions?	14
5. Biochar: What can we expect from adding charcoal to the soil?	19
6. Industrial livestock production: Intensification is not an option	24
7. What are the climate implications of grabbing 'marginal land'?	28
8. Can genetic engineering and the new "bioeconomy" provide solutions to climate change?	30
9. Towards an Alternative Vision	36

¹ First draft for the Bonn Climate Change Talks, June 2009. Both version are online available at www.econexus.info

Executive Summary

Agriculture has entered the Copenhagen draft agreement. While few would deny that agriculture is affected by climate change and that the right practices contribute to mitigate it, expectations of the Copenhagen agreement diverge sharply, as well as notions on what are good and what are bad agricultural practices and whether any funding should come from carbon trading, or a fund or both..

Many Annex I countries want to see (virtually) all funding to come from offsets, emissions trading and projects in Non-Annex 1 Countries (largely the South). In 2008 a record 4.9 billion tonnes of carbon dioxide equivalent (CO_2e) emission reductions were traded on global carbon markets, and carbon trading increased by 83 per cent in just one year, but this trading has not led to a reduction in emissions. Since the Kyoto Protocol came into force in 2005, global CO_2 emissions have continued to increase.

Carbon trading does nothing to prevent emissions from fossil fuel burning in the North and there is strong evidence that Clean Development Mechanism (CDM) credits are being used to subsidise some of the most polluting industries in the South. Not surprisingly therefore, carbon trading has not delivered emissions reductions. Few have realized that there are several agricultural methodologies under the CDM, and many projects exist, particularly in relation to pig farms and oil palm plantations. These are contested for many reasons such as biodiversity destruction and soil and water pollution. These United Nations Framework Convention on Climate Change (UNFCCC) approved methodologies actually help to subsidize and legitimise intensive industrial pig farms and plantations.

Offsetting is based entirely on the reduction of hypothetical emissions that would have taken place had the project not been in place. Hitherto there have been certain limits to the scope of CDM projects. Parties to the Kyoto Protocol had ruled that soil carbon sequestration and avoided deforestation are not eligible for CDM credits and furthermore, afforestation and reforestation can only account for 1% of Certified Emission Reductions. Now there is pressure to remove all these limits to offsetting. One reason given is that capacity to measure, report and verify emission reductions of certain agricultural methods has improved. However, the doubts regarding the sustainability of the methods themselves have remained.

There are proposals in the Copenhagen negotiation documents to render agricultural offsetting far easier by removing the exclusion of soil carbon sequestration from the CDM and by introducing sectoral policies and national mitigation actions which might again be financed through carbon trading. Unsurprisingly, businesses proposing hypothetical emission reductions are proliferating, such as the 25x'25 Coalition that predicts additional annual gross revenues for the US agriculture and forestry sector of over \$100 billion from US domestic offsets, corresponding to 50 percent of the total value of US agricultural production.

Although the potent gases nitrous oxide (N_2O) and methane represent the largest direct emissions from agriculture, the emphasis of the agriculture debate in the context of a Copenhagen agreement is based on carbon sequestration in soils, a consequence of the dominance of the offset approach. Soils are complex systems with rich biodiversity, organic matter, water flows, complex layers and aggregates. Degradation comes fast, while the building of soils takes decades or centuries. Soils, already degraded in many regions, are very likely to suffer from the proposed methods to sequester carbon.

The inclusion of soil carbon sequestration has been proposed by the United Nations Convention to Combat Desertification (UNCCD) and several governments, with biochar explicitly mentioned. No-till, which has repeatedly been proposed by biotech companies, is included 'by default'. Propositions in UNFCCC workshops and side events also include agricultural practices such as intensification of industrial livestock production, GM crops and bioeconomy, and the use of so-called marginal land.

In **non-tillage agriculture** (no-till or NT), soil carbon emissions are meant to be reduced by not disturbing the soil through tillage. Weeds are killed off through the application of herbicides instead, and genetically modified (GM) crops tolerant to herbicides lend themselves to this practice. But while experience from existing large scale no-till agriculture (especially with GM soya in Argentina and other crops in the US) show negative impacts on environment and climate, the capacity to sequester carbon in no-till soils is not conclusively proven. It is also largely unknown how notill impacts on soil respiration, de-nitrification, N_2O emissions and thus overall greenhouse gas emissions, and how it compares to other management systems. In view of the inconclusive data, the fact that FAO calls for offsets from NT or "conservation agriculture" together with the biotech industry runs contrary to the independence required/expected from an UN institution.

Biochar is proposed as a new form of soil carbon sequestration in which fine-grained charcoal is applied to the soil. This carbon is identical to black carbon which is known for its negative impacts on climate change when airborne. The International Biochar Initiative (IBI) argues that applying charcoal to soils would create a reliable and virtually permanent carbon sink, mitigate climate change, and make soils more fertile. In support, the IBI cites past applications of charcoal such as Amazonian Dark Earths in which charcoal has been used together with varied organic residues over long periods. These, however, bear little resemblance to what is currently being proposed. Even studies by scientists who are members of the IBI indicate high levels of uncertainty and contra-indications. The burning of biomass to produce charcoal is described as close to carbon neutral because greenhouse gas (GHG) emissions during combustion are supposedly offset by CO₂ absorption in new growth, but this ignores impacts of conversion or degradation of the large areas of land needed, estimates range from half to two billion hectares.

It is also unclear what percentage of black carbon will remain in the soil, for how long, and how much will be turned into CO_2 and emitted again. Recent research shows that adding charcoal to soil sometimes even *increased* soil organic carbon losses, resulting in CO_2 emissions.

Risks also lie in the fact that small black carbon particles, if they become airborne, can significantly worsen global warming. Significant black carbon losses during biochar application have been documented and soil erosion is another way for them to become airborne.

Nevertheless, biochar is proposed among others by the UNCCD, by a number of African countries and Belize, Costa Rica, Micronesia and, with a qualification, Australia. UNCCD is referring to IPCC, which, however, has not come to any conclusion on biochar and did not comment on it in its most recent Assessment Report. Over 150 civil society organisations have rejected biochar as an offset method.

Industrial livestock production is a major emitter of greenhouse gases, mainly nitrous oxide and methane. Grain feed production currently uses one third of global cropland and chemical fertilizers that are responsible for most of the anthropogenic nitrous oxide emissions. Yet the response is to propose intensification of industrial livestock production which is likely to deepen current problems instead of solving them. The same is true for aquaculture, which increasingly turns to the same feed resources as livestock. Grasslands represent a third of terrestrial carbon stores, mainly in their root mass, and they evolved in co-existence with livestock. Wrongly, extensive grazing is blamed for harming the climate. When grasslands are turned over to crops, often for more feed for ever more livestock, they release their carbon stores to the atmosphere.

Removing most of the animal products from Northern diets has become an imperative. The question how to achieve this has to be put on the UN agenda, the more so as, according to FAO, animal products are not required for a healthy diet, contrary to widespread belief. The intensification of livestock and aquaculture is not a sustainable option.

GM crops and further moves towards a "bioeconomy" have not yet been proposed as such for offsetting, but they are being advocated as likely solutions to a wide range of problems linked to climate change. In particular GM is presented as a means to increase yields on existing agricultural land, even though no crops have actually been engineered for yield increase and current GM crops have not led to increased yields but only some temporary reduction of losses. Hundreds of patent applications have been made for so-called "climate ready" GM crops. Promised solutions include extending the geographic and climatic range of crops and their capacity to tolerate salt, drought, heat and floods, as well as genetically engineering plants so that applications of nitrogen fertiliser can be reduced. In fact, such crops have been heralded since the 1980s, promising drought and salt tolerant crops and nitrogen-fixation as a means to combat hunger but no such GM crops have yet been launched. At the same time GM crops have led to problems such as serious herbicide resistance among weeds, requiring additional herbicide applications, with negative impacts on environment and climate. There are ambitious plans to develop a new bioeconomy based on biomass refineries to produce substitutes for fossil oil. The biotech industry

4

clearly sees climate change as an unlimited opportunity for expansion and is lobbying for GM to be recognised as offering key solutions that must be protected by strong intellectual property rights.

Another proposal is to increase the acreage for agriculture by using so-called "**marginal**" **lands**. However, unused land is rare. What's seen as marginal land is often land used by marginalized people, by economically weaker sectors of communities. Much of it is communal land, collectively used by local people who might not have an individual land title, but for whom it is a vital resource for water, feed, food, medicines, fuel and other purposes. Such land is also essential for biodiversity, water supplies, soil and ecosystem regeneration.

FAO was in favour of major increases in funding for agriculture in a Copenhagen agreement arguing that

"millions of farmers around the globe could also become agents of change helping to reduce greenhouse gas emissions". Their land may now become the target of businesses that intend to sequester carbon in soils.

This report does not address the existing positive options for an agriculture that mitigates climate change. They have long been advocated by, for example, the world's largest organisation of smallholder farmers, Via Campesina. These options have hardly been registered by the climate talks in the run up to Copenhagen. The challenge for a post-2012 climate agreement besides setting meaningful policies for reducing emissions, is to withstand the lobbying of companies seeking to extract carbon credits from agriculture.

1. Introduction

This paper discusses some of the ways in which industrial agriculture is proposed to mitigate and promote adaptation to climate change in the UN Framework Convention on Climate Change (UNFCCC).

In brief, *mitigation* deals with the causes of climate change, while *adaptation* tackles its effects. The Intergovernmental Panel on Climate Change (IPCC) defines mitigation as "an anthropogenic intervention to reduce the sources or enhance the sinks of greenhouse gases" and adaptation as "the adjustment in natural or human systems to a new or changing environment. Adaptation to climate change refers to adjustment in natural or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities. Various types of adaptation can be distinguished, including anticipatory and reactive adaptation, private and public adaptation, and autonomous and planned adaptation."²

Proposals for mitigation include the agricultural practise of non-tillage (no-till, NT), the exploitation of biomass as bio- or agrofuels³ and 'biochar' to counter climate change as well as the intensification of industrial livestock production; adaptation on the other hand includes the development and cultivation of genetically modified (GM) 'climate ready' crops and the exploitation of so-called marginal land. This report also discusses the likely consequences of including agriculture and soils in carbon trading.

Agriculture is a major contributor to climate change. In 2000, about 35% of greenhouse gas emissions came from non-energy emissions: 14% were nitrous oxide and methane from agriculture, 18% from land use change mainly from deforestation for agricultural purposes. Those figures do not include large emissions from soil carbon losses, including peat degradation and peat fires.⁴ They also omit other important figures; for example the

² IPCC (2001): Climate Change 2001: Mitigation. Annex II Glossary. http://www.ipcc.ch/ipccreports/tar/wg3/454.htm

³ The use of crop plants as fuels is often described as "biofuel". In this report we use the term "agrofuel" to describe them clearly as agricultural products. For details on the relationship between agrofuels and climate change see also Chapter 1 of "Agrofuels: Towards a reality check in nine key areas" by Ernsting et al. (2007): http://www.econexus.info

⁴ Stern N. (2006): Stern Review on the Economics of Climate Change. Executive Summary. HM treasury. http://www.hmtreasury.gov.uk/d/Executive_Summary.pdf and Annex 7.g: Emissions from agriculture sector http://www.hmtreasury.gov.uk/d/annex7g_agriculture.pdf. Greenhouse gas emissions 2000: energy emissions: power 24%, industry 14%, transport 14%, buildings 8%, other 5%; non-energy emissions: land use 18%, agriculture 14%, waste 3%.

5

US food system accounts for some 17% of US energy consumption.⁵

At the same time, the impacts of climate change on agriculture are already serious. Seasons and weather are becoming increasingly unpredictable and extreme. This can lead to major losses as farmers no longer know what or when to plant. If climate change continues unabated, the increasing extremes could lead to the collapse of whole agricultural regions. Climate change also disrupts and alters pest and disease patterns, posing risks to agriculture everywhere.

Further intensification proposed

It is widely accepted that industrial agriculture has had destructive impacts on climate, ecosystems, soil, water and biodiversity resources, yet agriculture has hitherto been neglected in UNFCCC negotiations and in the government departments addressing climate change. However, in many quarters, including the UNFCCC itself, further intensification of industrial agriculture is now proposed as part of the solution to the problems of climate change to which it has contributed in the first place.⁶ Intensive industrial (largely monoculture) production, for example, is proposed as a means to produce agrofuels and biochar on a massive scale as well as to develop a bioeconomy, in which fuels and industrial materials are produced from biomass instead of from fossil oil.

Agriculture for the climate market

Now, as negotiations have begun for a Copenhagen climate agreement, proposals are being made to extend funding for agriculture as an eligible source of climate change mitigation, and include soil carbon sequestration, which some estimate has "the potential to offset some 5-15% of global fossil-fuel emissions".⁷

The International Food Policy Research Institute (IFPRI) and FAO have both endorsed this.⁸ The Assistant

Director General Alexander Müller⁹ even argued for an inclusion of soil carbon sequestration by stating that "soil carbon sequestration, through which nearly 90% of agriculture's climate change mitigation potential could be realized, is outside the scope of the Clean Development Mechanism under the Kyoto Protocol" but that carbon markets should be introduced to "provide strong incentives for public and private carbon funds in developed countries to buy agriculture-related emission reductions from developing countries [...]."¹⁰

In recent months, the United Nations Convention to Combat Desertification (UNCCD) followed by a number of African countries, Micronesia, Costa Rica and Belize have begun to promote biochar for carbon sequestration and as a soil additive.¹¹ Biochar is basically fine-grained charcoal, but - more importantly - it can also be a by-product of methods currently explored to process biomass into so-called second generation agrofuels (see chapter 5).

We may therefore expect increasing calls for:

- agriculture to be highlighted in negotiations towards a Copenhagen climate agreement (like the suggestions by IFPRI and FAO);
- payment for environmental services (PES) for agriculture, to be funded mostly through carbon markets; and
- special emphasis on carbon sequestration in soil, including CDM eligibility for soil carbon sequestration, with biochar being specifically mentioned.

In this context the Food and Agriculture Organization of

9 at the climate negotiations in Bonn in April 2009

http://unfccc.int/files/kyoto_protocol/application/pdf/swazilandonte ehalfof060209.pdf

⁵ Grain (2007): Stop the Agrofuel Craze. Seedling July 2007: 2-9; http://www.grain.org/seedling_files/seed-07-07-2-en.pdf

⁶ United Nations (2008): Challenges and opportunities for mitigation in the agricultural sector UNFCCC: FCCC/TP/2008/8.

⁷ Lal R. (2004): Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 304, 1623-1627.

⁸ Nelson G.C. (2009): Agriculture and climate change: An agenda for negotiation in Copenhagen. IFPRI, Focus 16. http://www.ifpri.org/2020/focus/focus16/Focus16_01.pdf ; FAO (2009): Climate change talks should include farmers. Press release, 2 April 2009. http://www.fao.org/news/story/en/item/11356/icode/

¹⁰ FAO (2009): Climate change talks should include farmers. Press release, 2 April 2009. http://www.fao.org/news/story/en/item/11356/icode/

¹¹ UNCCD (2009): Submission by the United Nations Convention to Combat Desertification, 5th Session of the Ad Hoc Working Group on Long-term Cooperative Action under the Convention (AWG-LCA 5), Bonn, Germany, 29 March – 8 April 2009; http://www.unccd.int/publicinfo/AWGLCA5/UNCCD_2nd_submis sion_land_soils_and_UNFCCC_process_05Feb.pdf African governments (2009): Submission of African Governments to the 5th Session of the Ad Hoc Working Group on Long-term Cooperative Action under the Convention (AWG-LCA 5), Bonn, Germany, 29 March - April 2009 : The Gambia, Ghana, Lesotho, Mozambique, Niger, Senegal, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe; http://unfccc.int/files/kyoto_protocol/application/pdf/swazilandonb

1	е	6

Abbrevations				
ADE	Amazonian Dark Earth			
BIO	Biotechnology Industry Organisation			
CBD	Convention for Biological Diversity			
CBI	Confidential Business Information			
CDM	Clean Development Mechanism			
CO₂e	CO ₂ equivalent			
CRP	Conservation Reserve Programme			
СТ	conventional tillage			
CTIC	Conservation Technology Information Center			
FAO	Food and Agriculture Organization of the United Nations			
GHG	greenhouse gases			
GM	genetically modified			
IBI	International Biochar Initiative			
IFAP	International Federation of Agricultural Producers			
IPCC	Intergovernmental Panel on Climate Change			
NAMA	Nationally Appropriate Mitigation Actions			
NT	no-till, no-tillage			
PES	payment for environmental services			
REDD	Reducing Emissions from Deforestation and Degradation			
UNCCD	United Nations Convention to Combat Desertification			
UNEP	United Nations Environment Programme			
UNFCC	United Nations Framework Convention on Climate Change			

the United Nations (FAO) sees the aforementioned 'agriculture-related emission reductions from developing countries' as a chance to "provide important investments to spur rural development and sustainable agriculture in developing countries. Product standards and labels could be developed to certify the mitigation impact of agricultural goods."¹²

However, the measuring and certification of emissions reductions and the regulation of such markets will be a problem in itself and could lead to massive corruption, with for example two CDM validators having recently been suspended (see box 3.1, p. 8). But more importantly, their existence will offer developed countries and their industries the opportunity to use offset programmes and similar mechanisms to avoid their obligation to reduce their own climate emissions. Trading services in agriculture will not address the fundamental problems of relying on a model of permanent economic growth on a planet of finite resources. Instead, having just experienced the impacts of a subprime property market, we now run the risk of building a subprime carbon market whose impacts could be far deadlier.¹³

12 FAO (2009): Climate change talks should include farmers. Press release, 2 April 2009.

http://www.fao.org/news/story/en/item/11356/icode/

13 Friends of the Earth (2008): Subprime Carbon? Re-thinking the world's largest new derivatives market., Friends of the Earth, http:// Furthermore, emissions trading hinders emission reduction and efficiency improvements.¹⁴ But worst of all we are speeding up the destruction of the biodiversity and ecosystems that are crucial if we are to stabilize climate, produce food and leave a habitable planet to future generations.

There are alternative models for the future of agriculture, but they are currently neglected in the UNFCCC process. They include biodiverse ecological agriculture and agroforestry, which can increase food production and reduce the climate footprint of agriculture, as well as playing a major role in ecosystem restoration and maintenance. Agriculture should be recognized more clearly as a multifunctional activity. It not only produces food, medicine, materials, fibres, etc, and can effectively recycle wastes into soil restoration, but also has many other roles. This includes protecting biodiversity, soils, water sources in tune with the local ecology (ecosystem functions) and has additional cultural, landscape, and well-being values for people, over and above their need for nourishment. Finally, it is a repository for knowledge built up over generations that we lose at our peril.

www.foe.org/subprime-carbon

¹⁴ EurActiv.com (2009): Carbon trading 'stifling EU energy-savings potential'. 22 April 2009. http://www.euractiv.com/en/energyefficiency/carbon-trading-stifling-eu-energy-savingspotential/article-181502

Messages like these come for example from farmers themselves, such as in La Via Campesina's report on how small-scale sustainable farmers are cooling down the earth¹⁵ or in Practical Action's paper on biodiverse agriculture for a changing climate.¹⁶

Also the International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD) report,¹⁷ written by 400 scientists in a cooperative process between a wide range of UN institutions and approved by 57 governments prior to publication, notes:

"A powerful tool for meeting development and sustainability goals resides in empowering farmers to innovatively manage soils, water, biological resources, pests, disease vectors, genetic diversity, and conserve natural resources in a culturally appropriate manner."¹⁸

Great caution is needed around adopting agriculture practices and techniques for climate change mitigation. Policy makers should not assume that solutions to climate change are necessarily technical. Many of them are social and cultural. We urgently need to shift our focus away from technology 'futures' promises to the readily available knowledge, experience and resourcefulness of local communities. This is urgent as the displacement and de-skilling of such communities and small food producers proceeds apace.

2. Where we have got to in negotiations?

Opinions among governments are very diverse as to whether - and if so how – funding for agriculture should be increased and more techniques should be covered in a Copenhagen agreement. Opinions are also split about the possible inclusion of soil carbon in general and biochar in particular (see chapter 5). Many governments are looking for ways to raise funds and payments for soil carbon.

18 IAASTD (2009)

Some have suggested that agriculture should be part of Nationally Appropriate Mitigation Actions (NAMAs) and possibly included in REDD-plus.¹⁹ Within the draft negotiating text, the debate about financing mechanisms is separate from the debate about activities that could be funded. On the one hand, the inclusion of soil carbon sequestration including biochar and increased support for other agricultural activities could in itself lead to perverse outcomes, regardless of the financing mechanism, as

other chapters in this report show.

Funding no-till monocultures, for example, is likely to lead to more pesticide use, more concentration of landownership, and potentially more deforestation and overall greenhouse gas emissions, regardless of whether the money comes from the carbon markets or from a government fund. It is highly likely that the bulk of new funding for 'agriculture' and 'forests' will go towards new monocultures at a time when the demand for land and biomass is growing fast for bioenergy and agrofuels. Already, Clean Development Mechanism (CDM) funding goes towards biomass and biofuel projects and there are signs that this trend will substantially increase, with specific methodologies (charcoal from tree plantations for iron ore production and plant oil from dedicated feedstock for transport) having already been approved.

On the other hand, carbon trading itself has negative outcomes, because it functions as a means of avoiding emission cuts by polluting industries in Annex 1 countries, and because the mechanism is inherently biased against communities and smallholders in favour of companies with enough funds to pay for specialist consultants. This is discussed further in chapter 3. Although many non-Annex 1 countries object to an expansion of carbon finance, not least in the forest and agricultural sectors, the position of the US, EU and many other Annex 1 countries suggests that a growth in carbon markets could nonetheless be the most likely eventual outcome should there be a new agreement. This means that even support for the inclusion of positive and desirable activities, such as soil carbon in organic farming, into a United Nations Framework Convention

¹⁵ Via Campesina (2007): Small scale sustainable farmers are cooling down the earth. Background paper; (accessed 20.5.2009) http://viacampesina.org/main_en/index.php? option=com_content&task=view&id=457&Itemid=37

¹⁶ Practial Action (f2009): Biodiverse agriculture for a changing climate. http://practicalaction.org/?id=biodiverse_agriculture_paper

IAASTD (2009): Summary for Decision Makers of the Global Report. Island Press, Washington, USA. http://www.agassessment.org/docs/SR_Exec_Sum_280508_Englis h.htm

¹⁹ Definition from AWGLCA: REDD-plus defined as in paragraph 1 (b) (iii) of the Bali Action Plan (issues related to policy approaches and positive incentives on issues relating to reducing emissions from deforestation and forest degradation in developing countries; and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries)

Box 3.1: Fraudulent carbon trading

The distinction between fraudulent and other carbon trading is already dubious in itself because trade takes place with something entirely illusory. As Larry Lohmann stated: "This unverifiability makes it relatively easy for a skilful and well-paid carbon accountant whose work is largely shielded from public scrutiny to help fabricate huge numbers of pollution rights for sale to Northern fossil fuel polluters. At the same time, it makes impossible any distinction between fraud and non-fraud, rendering any attempt at reform ultimately pointless."¹

Apparently the options for policy failures are numerous, as a report from the UK in August 2008 shows:

"Carbon Traders Arrested for Tax Fraud: British customs officials arrested seven people near London on Wednesday Thursday who are suspected of dodging taxes that should have been paid for selling large amounts of carbon dioxide permits - the main currency in the European Union's Emissions Trading System.² The suspected fraud amounted to £38 million, or nearly \$63 million, the British tax agency, HM Revenue & Customs, said in a statement. [...]

Many polluting businesses in Europe are required to buy the permits, which are part of a cap-and-trade system similar to the one under consideration in the United States, and which currently trade for about 15 Euros (\$21) for each ton of CO_2 emitted. [...] The companies in the network are suspected of adding the VAT. to the price of the permits, which they sold in Britain. The companies then disappeared before paying the tax to British authorities. [...] Last month, Britain exempted carbon trading from the VAT to curb the possibility of similar cases in the future. France and the Netherlands took similar steps earlier in the summer. Even so, the tax agency said it "still intends to pursue relentlessly those that may have used carbon credit trading to cheat the public purse."

- 1 Lohmann L.: Climate Crisis: Social Science Crisis. in Der Klimawandel: Sozialwissenschaftliche Perspektiven (forthcoming]). http://www.tni.org/archives/lohmann/sciencecrisis.pdf
- 2 EU: Emission Trading System (EU ETS); http://ec.europa.eu/environment/climat/emission/index_en.htm
- 3 Kanter J. (2009): Carbon traders arrested for tax fraud. NewYork Times, 20.8.2009; http://greeninc.blogs.nytimes.com/author/james-kanter; accessed 24.8.2009

on Climate Change (UNFCCC) agreement needs to be viewed with great caution.

In order to finance REDD, some have proposed that there should be a fund to reward sustainable management of land, forest and agriculture. The facilitation of technology-transfer to tackle climate change for many areas of work including agriculture has been proposed and at the same time there are calls to prevent performance standards or any actions in agriculture that could act as barriers to trade. Finally there has been a call for patent exemption for access to mitigation technologies and for no patents to be granted on genetic resources essential to climate change adaptation. Groups such as the Biotechnology Industry Organisation (BIO) are lobbying strongly against such proposals (see p. 31).

3. Carbon Trading Proposals for Agriculture

In 2008, 4.9 billion tonnes of carbon dioxide equivalent (CO_2e) emission reductions were traded on global carbon markets. Overall, carbon trading increased by 83% in just one year.²⁰ However, trading in emissions reductions does not imply emissions being reduced. Since the Kyoto Protocol came into force in 2005, global CO_2 emissions, including from fossil fuel burning and cement production, have been increasing. The growing carbon markets have not led to overall emission reductions in the industrialized nations which are committed to reducing their greenhouse gas emissions under the Kyoto Protocol, the so-called Annex 1 countries.²¹ Instead, the world is now on course

www.pbl.nl/en/publications/2008/GlobalCO2emissions through 200

²⁰ Environmentalleader.com (2009): Carbon market up 83% In 2008, value hits \$125 billion. 14.1.2009; accessed 20.5.2009; www.environmentalleader.com/2009/01/14/carbon-market-up-83in-2008-value-hits-125-billion/

 ²¹ Netherlands Environmental Assessment Agency (2008): Global CO2 emissions: increase continued in 2007. 13.6.2009, accessed 20.5.2009;

9

for the worst emissions scenario predicted by the Intergovernmental Panel on Climate Change (IPCC), or perhaps an even worse one.²² Peter Atherton of Citigroup, strongly involved in carbon trading, described the world's biggest carbon market in 2007: "*The European Emissions Trading Scheme has done nothing to curb emissions*... *Have policy goals been achieved? Prices up, emissions up, profits up... so, not really.*"²³

Nonetheless, the great majority of proposals for a post-2012 climate change agreement aim at a significant increase in carbon trading, including in the Clean Development Mechanism (CDM), administered by United Nations Framework Convention on Climate Change (UNFCCC). The CDM plays a crucial role within the carbon markets because CDM credits can be traded on other carbon markets, including the European Emissions Trading Scheme, which accounts for two thirds of all carbon trading. The only exception are CDM credits for "afforestation and reforestation" which cannot be traded under the European scheme.

The CDM has come under sustained criticism, amongst other issues, for funding projects which are not 'additional' and would have gone ahead anyway, for "being routinely abused by chemical, wind, gas and hydro companies who are claiming emission reduction credits for projects that should not qualify",²⁴ and for funding projects which increase greenhouse gas emissions, such as hydro dams.²⁵ Looking beyond these specific concerns, the principle of carbon-offsetting, which includes the CDM, is fundamentally flawed because any offset is used to licence fossil fuel burning elsewhere, thus permittting an overall increase in carbon dioxide concentrations. Despite this, many of the proposals made by Parties for a post-2012 climate change agreement entail a major expansion of the CDM and a weakening of such safeguards as exist at present. On the one hand, the CDM could cover new technologies, such as carbon capture and storage, nuclear power or soil

7.html

carbon sequestration (such as no-till agriculture as discussed in chapter 4 or biochar as discussed in chapter 5); on the other hand, the rules could be changed so that it could become easier for projects approved for funding. Furthermore, there are attempts to lift the current restriction for the proportion of CDM credits that can come from carbon sequestration (carbon storage).

At present, a maximum of 1% of CDM credits can come from sequestration in forests, whereby the term 'forest' includes tree and shrub plantations. As of 2008, such projects accounted for just 0.07% of CDM credits, but no CDM credits for carbon sequestration in soils are allowed. However, this is seen as key to including agriculture and agrocecological approaches as a carbon sink. Among others, the United Nations Convention to Combat Desertification (UNCCD) now calls to raise the 1% limit and to include soil carbon sequestration into the CDM.

There are three further proposals which might greatly increase carbon trading and erode or even abolish any rules which are supposed to link the CDM to emissions reductions. So far, no funding decisions have been made – many Annex 1 governments favour carbon trading as a key mechanism whereas many non-Annex 1 governments oppose this. Agriculture is likely to be affected by each one of those proposals.

- Sectoral Agreements whereby emissions in Annex 1 countries could potentially be offset against wider policies in a particular sector (such as agriculture) in a non-Annex 1 country,
- Nationally Appropriate Mitigation Actions (NAMAs) to which non-Annex 2 countries s (i.e. mainly developing countries) voluntarily agree and which could be funded through public funds or be used to offset Annex 1 countries emissions, or both. As Sectoral with Agreements, these policies could be designed to result in a lower increase in emissions than forecast rather than in any emissions reductions.26
- REDD-plus: REDD (Reducing Emissions from Deforestation and Degradation) involves funding

²² International Scientific Congress Climate Change: Global Risks, Challenges & Decisions (2009): Key messages from the congress. 12.3.2009, accessed 20.5.2009; http://climatecongress.ku.dk/newsroom/congress_key_messages/

²³ Peter Atherton, Citigroup Global Markets, January 2007

²⁴ Vidal J. (2008): *Billions wasted on UN climate programme*. The Guardian, 26.5.2008.

²⁵ Langman J. (2008): Generating Conflict. Newsweek International, 13.9.2008

²⁶ Reyes O. (2008): Ad Hoc Working Group on Kyoto Protocol update, aka how to expand carbon markets and count emissions increases as reductions. Carbon Trade Watch, 17.4.2009, accessed 20.5.209; http://www.carbontradewatch.org/index.php? option=com_content&task=view&id=261&Itemid=36

for reducing deforestation and degradation. The 'plus' refers to funding for forest conservation, sustainable forest management (a term routinely used for industrial logging) and for 'carbon stock enhancement', a term routinely used for industrial tree plantations. There is a strong push, particularly from Annex I countries for funding to come partly or in full through carbon trading.²⁷ There are increasing numbers of proposals to widen REDD-plus to cover other land use change and in particular agriculture.

A further proposal would also boost carbon market funding for agriculture: It could become illegal for national regional emissions trading schemes to discriminate between different types of emissions reductions approved by UNFCCC. At the moment, the EU Emissions Trading Scheme excludes agriculture and forestry projects. If the EU agreed to the proposals and thus obliged itself to include both, this could quickly direct large funding streams to agribusiness and plantation companies.

3.1 The role of agriculture in carbon trading today

Carbon trading has created windfall profits for power companies in Annex 1 countries, particularly in Europe, and for fossil fuel companies and other industries responsible for high levels of greenhouse gas emissions in non-Annex I countries. At present, around 6% of CDM funding goes to agricultural projects and a significant additional amount to biomass energy projects.²⁸ Those credits include livestock manure management (including biogas from swine manure) heat generation from palm oil mill effluents, and the use of agricultural residues for biomass. There are big winners. For example, in 2007, 90% of all approved CDM projects in Malaysia benefited palm oil companies²⁹ whereas in Mexico, half of all CDM projects involve pig farms. However, large agribusiness firms like Monsanto have so far obtained very little funding through carbon markets and none through the CDM, despite a long-standing lobbying campaign for no-till agriculture to be classed as a way of sequestering carbon and reducing emissions. There is no CDM methodology for greenhouse gas reductions from agricultural methods such as no till, due to the high uncertainties, for example relating to carbon dioxide fluxes and nitrous oxide emissions linked to no-till. CDM credits for soil carbon sequestration from cropland or forest management were ruled out in 2003.³⁰ Only the Chicago Climate Exchange and a few carbon offsetting companies and schemes, such as C-Lock Technology Canada provide carbon credits for soil carbon sequestration.

Nor has the agrofuel industry profited from carbon trading as yet. Until July this year, no full CDM projects had been approved which use either biomass from crops and trees grown for this purpose, or vegetable oil other than waste vegetable oil, although a small-scale CDM methodology for the use of plant oil from dedicated crops and trees was approved in 2007. So-called *small-scale* methodologies are simplified and apply to projects with fewer Certified Emissions Reductions (i.e. limited carbon credits). Nor do other carbon trading schemes appear to support agrofuels.

So far, only one larger carbon trading scheme, the Chicago Climate Exchange, has included agricultural soils and specifically no-till farming. In Saskatchewan, a pilot project was set up in 2005 which allowed trading in credits from no-till farming, but this was later abandoned. In Australia, Carbon Farmers have set up the Australian Soil Carbon Grower Register which assesses conditional carbon credits, however those are not being traded as yet and the Australian Government has so far been reluctant to give in to calls by the opposition leader to set and meet a high climate target largely with biochar and other soil carbon sequestration methods.

3.2 Agribusiness hopes for windfall profits from carbon trading

In theory, the reasons against including soil carbon sequestration into the CDM remain. The UNFCCC Secretariat confirmed in a recent presentation that lack of permanence (for example because a change in agricultural practices could release the soil carbon), and a

²⁷ REDD-Monitor (without date): REDD: An introduction. accessed 20.5.2009; www.redd-monitor.org/redd-an-introduction/

²⁸ Clean Development Mechanism – Appraisal of GHG standards and issues for agricultural mitigation, Neeta Hooda, UNFCCC Secretariat, presented at Conservation Agriculture Consultation, October 2008

²⁹ Biofuelwatch (2007): South East Asia's peat fires and global warming. Factsheet 1, Biofuelwatch, 6.6.2007, http://www.biofuelwatch.org.uk/peatfiresbackground060607.pdf

³⁰ see http://www.rubberboard.org.in/articles /websitematerialDDPhysiology.doc

Box 3.2: US Carbon Trading versus the Conservation Reserve Programme

In the US, the Conservation Reserve Programme (CRP) and the Wetlands Reserve Programme (WRP) are highly successful environmental schemes. Farmers enter into agreements lasting 5-30 years whereby they receive government subsidies for taking land out of production and planting trees, shrubs or grass, or for restoring wetlands. According to US government system, the CRP sequesters 21 million tonnes of carbon every year and prevents 408 million tonnes of soil being eroded annually, as well as protecting a large number of plant and animal species and 40% of commercial beehives. Yet the schemes are being eroded fast, largely as a result of ethanol and agribusiness industry lobbying

The 25x'25 Coalition has called for carbon offsets for the conversion of cropland to grassland, riparian buffers, forests and wetlands, i.e. for activities now covered by the CRP and WRP. Proposed US climate legislation includes offsets for some of those activities, namely afforestation and reforestation and conservation of grasslands, wetlands and peatlands and it leaves the door open to more activities being included in future.

Initially offsets are likely to be additional to the CRP and WRP, however existing pressures on both schemes could well cause them to be replaced by offsets. Under a carbon offsetting scheme farmers would have to submit applications which are likely to be far more complicated for returns that are far less predictable than those from current government funding, since the price of a tonne of carbon continuously changes. Applications to the CDM or to national or regional carbon trading schemes are very difficult without help from specialist consultants. Whereas funding for the CRP and WRP is ring-fenced, carbon credits for similar projects would not be. Farmers hoping to get help to restore wetlands or riparian buffers would be competing with large agribusiness companies vying for money for no-till soya. Furthermore, converting their land to monoculture tree plantations might well attract far more funding. This shows the difficulty of placing a successful government policy in competition with business interests.

high level of uncertainty regarding emissions, remain serious obstacles.³¹ Including agricultural soil carbon sequestration schemes and methods such as no-till agriculture despite fundamental concerns would further undermine the credibility of a climate agreement. It would allow certain and irreversible emissions from fossil fuel burning to be offset against highly uncertain soil carbon sequestration methods. In the case of no-till, not only is there –uncertainty about the impacts on the climate, but also the land could be tilled at any time if agriculturally required , for example, to eradicate weeds that have become herbicide tolerant. In the case of biochar, there is no consistent information about its fate in soils and about its impact on soil carbon and soil fertility.

Nonetheless, agribusiness companies as well as biochar firms and advocates are optimistic about reaping a windfall from carbon trading. In the US, the 25x25 Coalition has been instrumental in shaping the new administration's climate change policy. They comprise leading figures in the US soya and maize lobby, as well as forestry companies. Their aim is to see 25% of US primary energy by 2025 produced not from renewable energy in general but from "America's farms, forests and ranches."32 Proposed US climate change legislation includes nearly all of the demands made by this lobby for carbon offsets from agriculture and forestry. Those sectors are expected to provide the vast majority of domestic offsets, yet their own emissions are not capped. Those provisions, if endorsed, are unprecedented and take carbon trading to new levels of absurdity: For the first time an industrial country is close to introducing a partial 'greenhouse gas reduction target', and 'offset' emissions from 'capped sectors' with unproven methods used in uncapped sectors in the same country. Furthermore, according to the US Energy Information Administration, the proposed legislation will boost agrofuels and solid biomass to a far greater extent than wind or solar energy and proposed offsetting provisions alone would ensure that there would be no emissions reductions even from the 'capped sectors' for several decades.33 If it is

³¹ UNFCCC Secretariat (2009): Technical paper: Challenges and opportunities for mitigation in the agricultural sector. presentation at AWG-LCA workshop on opportunities and challenges for mitigation in the agricultural sector, Bonn, 4.4.2009; http://unfccc.int/files/meetings/ad_hoc_working_groups/lca/applica tion/pdf/1_unfccc.pdf

^{32 25}x'25 website; http://www.25x25.org

³³ Energy Information Administration (2009): Impacts of a 25-percent renewable electricity standard as proposed in the American clean energy and security act discussion draft; http://www.eia.doe.gov/oiaf/servicerpt/acesa/index.html

12

implemented then, as 25x'25 predict "the [US] agriculture and forestry sector could realise over \$100 billion in additional annual gross revenue" - 50% of the total value of US agriculture.³⁴ The US government also follows the agribusiness lobby by calling for major funding for agriculture through a post-2012 climate agreement.

3.3 Which type of agricultural projects could be funded through carbon trading in future?

The UNFCCC Secretariat has summed up the types of agricultural activities which could in future be subsidised through carbon trading: No-till and low-till, agricultural set asides, agroforestry, conversion of cropland to grassland or forests, carbon sequestration in agroecosystems, agrofuels and other types of industrial bioenergy, peatland restoration, restoration of degraded land, water management, improved rice management, improved livestock and manure management, nitrification inhibitors (chemicals added to nitrate fertilisers to slow down the release of the nitrate) and changes to the way in which synthetic fertilisers are used. The governments of eleven African countries, Belize, Micronesia as well as UNCCD have specifically called for the inclusion of biochar into the CDM.

Agrofuels and other bioenergy from crop and tree monocultures, possibly combined with biochar, no-till plantations of genetically modified crops and the industrial livestock industry are likely to attract a large proportion if not the bulk of future carbon credits for agriculture – and yet more funding will go to tree plantations under 'afforestation and reforestation' and most likely REDD-plus. This means that the majority of funding is likely to go towards intensive industrial agriculture and in the case of biochar, industrial tree plantations. Agrofuels, for example, are likely to be supported as climate friendly despite overwhelming evidence, including in peer-reviewed studies, that they *accelerate* global warming through land-use change and agro-chemical use.³⁵

Raising per hectare yields, a term often equated with agricultural intensification, is often seen as an effective means of reducing greenhouse gas emissions, for example by the IPCC and by the UNFCCC Secretariat, even though it is commonly associated with high energy and fossil-fuel based fertiliser use.36 The idea is that raising per hectare yields will reduce pressure on ecosystems. However, agrofuels and other types of bioenergy, supported by the same agencies, create an unlimited new market for agricultural and forest products. This dashes any hopes that higher yields will result in less pressure on ecosystems. Even if yields could be raised despite droughts and floods becoming more common due to climate change and despite soil and freshwater depletion, the increased demand for bioenergy will translate higher yields into higher profits and land prices, providing further incentives for companies to expand agriculture.

3.4 REDD: Helping forests or plantation?

The Biochar Fund recently succeeded in obtaining funding from the Congo Basin Forest Fund for reducing deforestation in DR Congo.³⁷ The idea is that small farmers who currently practice slash-and-burn agriculture can permanently improve their crop yields by turning biomass into fine-grained charcoal (biochar) and can therefore abandon their current practices. The funding was awarded despite the lack of evidence that biochar use will improve those farmers' crop yields particularly over the long-term. However, biochar and different agricultural practices could yet be included into the REDD-plus Mechanism without deforestation having to be reduced.

The definition of forests which applies to the CDM is wider than even that of the Food and Agricultural Organisation (FAO) or the Convention for Biological Diversity (CBD), which encompasses industrial tree plantations but excludes those agricultural production systems (such as oil palm) and plantations with an average height of less than five metres. In contrast, under the CDM any plantation of trees or shrubs of more than 2

^{34 25}x'25 (2009): Agriculture and Forestry in a Reduced Carbon Economy: Solutions from the Land. A Discussion Guide. 1.4.2009

³⁵ See for example: Fargione J., Hill J., Tilman D., Polasky St. & Hawthrone P (2008): Land clearing and the biofuel carbon debt. Science 319(5867): 1235-1238; and Searchinger et al. (2008): Use of US cropland for biofuels increases greenhouse gases through emissions from land use change. Science 319(5867): 1238-1240.

³⁶ See UNFCCC (2009): Workshop on opportunities and challenges for mitigation in the agricultural sector. 4.4.2009; http://unfccc.int/ meetings/ad_hoc_working_groups/lca/items/4815.php

³⁷ Congo Basin Forest Fund (2009): Successful projects (2009) > Projects to receive funding from the CBFF. accessed 20.5.2009; http://www.cbffund.org/site_assets/downloads/pdf/projects_receiving_funding.pdf

13

metres in height, including by default GE trees and shrubs, can be classed as a 'forest'. Planting oil palm or jatropha plantations could thus be classed as afforestation and reforestation, particularly if rules for such schemes continue to be relaxed. The Mexican government already promotes palm oil and jatropha expansion and intends to include its agricultural sector in its national REDD strategy.³⁸

The US government goes a step further: it calls for REDD-plus to cover not just forests but all types of land use. Countries should be able to choose which sector they wish to include first. Under a recent US REDD-plus proposal, it would become legitimate for countries to channel funding exclusively to agribusiness without any attempt to protect forests at all.39 At the UNFCCC talks in August this year, Australia, New Zealand and South Africa also called for REDD-plus to be extended beyond forests. Support for integrating agriculture into REDD also comes from the International Agricultural and Food Trade Council, (which includes Monsanto, Cargill, Syngenta and Unilever as well as WWF). Their joint report with the International Centre for Trade and Sustainable Development proposes broadening REDDplus to include agriculture as one option and also supports the inclusion of soil carbon sequestration into the CDM.40

Conclusions

In 2000, the US proposed that under the Kyoto Protocol an unlimited percentage of the total emission reductions should be allowed to come from tree plantations and agricultural practices instead of reducing emissions from other sources like industry and transport. This was rejected by the EU and many other Parties as undermining attempts to address the causes of climate change.

Proposals which are now being discussed for a post-2012 agreement resemble the former US proposal in that they would allow requirements for a large or even uncapped proportion of emission reductions to be met from questionable agricultural and forestry activities, without ending deforestation and other ecosystem destruction.

The market-based proposals relating to REDD-plus, "afforestation and reforestation", biochar (i.e. charcoal applied to soils) and agriculture would greatly increase the classification of agricultural lands, forests and plantations as carbon sinks to offset emissions from fossil fuel burning. Furthermore, the inclusion of agriculture as well as industrial tree plantations into the REDD mechanism would undermine any REDD agreement and would allow countries to profit from tree or shrub plantations (such as jatropha) and, if the new US proposal is adopted, even from GM soya plantations regardless of continued deforestation. The aim of preserving forests would thus be completely undermined.

Proposals for the agricultural sector suggest that funding would primarily be channelled towards industrial monocultures, combined with agrofuel and agroenergy expansion. Non-industrial, biodiverse farming by smallscale farmers is unlikely to benefit. As Larry Lohmann from Corner House states: "The CDM's market structure biases it against small community based projects, which tend not to be able to afford the high transaction costs necessary for each scheme."41 The high transaction costs, however, arise from the requirement to (at least on paper) demonstrate climate benefits as well as the wider sustainability of projects. There is already strong evidence that CDM projects are routinely approved which do not meet these criteria. Further relaxing the requirements would make the system even more open for abuse. The bias towards large projects and companies rather than communities is thus inherent in the CDM.

Allowing general policy-based or sector-based carbon credits, rather than just project-based ones, would further uncouple so-called offsets from any emission reductions. There is even the possibility that rising emissions could be counted as emission reductions provided that they are lower than forecast. The proposed market-based policies

³⁸ Mexico (2009): Mexico: Challenges & Opportunities for mitigation in the agricultural sector. Presentation given at AWG-LCA 5th Session, Workshop on opportunities and challenges for mitigation in the agricultural sector, Bonn, Germany. 4.4.2009; http://unfccc.int/files/meetings/ad_hoc_working_groups/lca/applica tion/pdf/8_mexico.pdf

³⁹ United States of America (2009): United States Input to the Negotiating Text for Consideration at the 6th Session of the AWG-LCA. Copenhagen Decision Adopting the Implementing Agreement. submitted on 4.5.2009; http://unfccc.int/files/kyoto_protocol/application/pdf/usa040509.pd f

⁴⁰ CTSD-IPC Platform on Climate Change, Agriculture and Trade (2009): International Climate Change Negotiations and Agriculture. Policy Focus, May 2009. www.agritrade.org/documents/IPCPolicyBrief527final.pdf

Lohmann L. (2006): Carbon Trading: A critical conversation on climate change, privatisation and power. Development dialogue 48.

are likely to benefit large-scale industrial agriculture, rather than non-industrial, integrated farming which has a high potential for mitigating climate change as well as preserving biodiversity. The emphasis on market-based options threatens successful government-funded and regulatory policies, such as the US Conservation Reserve Programme.

Proposals for agriculture to play a significant role in carbon trading and in wider market-based policies in a post-2012 climate agreement thus threaten to undermine any effective response to climate change.

On the one hand, the large-scale inclusion of agriculture and soil carbon sequestration into carbon trading as offsets will further weaken any incentives to reduce fossil fuel emissions. On the other hand the agricultural practices most likely to benefit are those such as no-till monocultures and biochar. Not only have those not been proven to benefit the climate but also they are very likely to exacerbate climate change if used on a large scale. The main beneficiaries of the proposals are likely to be industries such as animal feed, agrofuels, biochar, pulp and paper and all that seek to supply the emerging bioeconomy.. These industries are likely to continue large-scale deforestation and other ecosystem destruction, so accelerating climate change, the pollution of air, soil and water, and the displacement of indigenous peoples, small farmers and other communities.

4. Does no-till agriculture reduce carbon emissions?

No-till agriculture has been promoted for some years as a means to sequester and build up carbon in the soil, as well as improve its structure and water retention capacity. International bodies such as the Food and Agriculture Organisation have made submissions to the United Nations Framework Convention on Climate Change (UNFCCC) calling for its large-scale adoption, and for this to be stimulated by the recognition of soils as carbon sinks. Monsanto backed no-till agriculture for recognition under the UNFCCC many years ago: "Since COP4 at Buenos Aires in 1998, Monsanto has promoted its model of conservation tillage, which it claims could meet up to 30 per cent of USA reduction targets. Robert B. Horsch, Monsanto's President for Sustainable Development, explained that: 'Monsanto and others worked hard and successfully at the meeting to persuade delegates to look

into agricultural carbon 'sinks' as a way to reduce atmospheric greenhouse gases'."⁴² Meanwhile, the Intergovernmental Panel on Climate Change (IPCC) has been more cautious and recognises that there is conflicting evidence and considerable uncertainty about the benefits of no-till agriculture. However, there is now a strong lobby for the recognition and reward of no-till practices under the UNFCCC from organisation such as FAO, producers and agrochemical organisations (e.g. IFAP), powerful no-till advocacy groupings and organisations of large farmers.

What is no-till agriculture?

No-till agriculture (NT), also known as conservation tillage or zero tillage, is a cultivation method that avoids turning the soil. Prior to its development, it was assumed that tillage is necessary to improve water infiltration and soil aeration as well as to control weeds. Modern development of NT began after ICI discovered the herbicide paraquat in 1955. In the beginning, this technique was applied mainly in eroded and depleted soils because one of its main advantages is that the soil is rarely left bare, making it less vulnerable to erosion and evaporation. NT is also said to improve the soil-aggregate formation, its microbial activity as well as water infiltration and storage.

In NT the new crop is sown into the residues of the previous crop. Without ploughing to control weed growth, most NT agriculture uses herbicides to kill weeds and the remains of the previous crop.⁴³ NT was developed before the advent of genetically modified (GM) crops but GM herbicide tolerant crops lend themselves to the system because they are not damaged by the herbicide application. It is also claimed that NT requires less labour as seed, fertiliser and herbicide can all be applied on a single journey by one direct drilling machine.

There are other forms of no-till agriculture, some of which are organic. These include for example planting a cover crop that is then crushed and uprooted using a crimper roller.⁴⁴ Exact data about the use of no-till practices are difficult to obtain because different

⁴² Harbinson R. (2001): *Conservation tillage and climate change*. Biotechnology and Development Monitor 46: 12-17.

⁴³ A form of NT weed control is also used in organic agriculture. However, it is not used extensively, because it involves considerable work and because usually the cover crop residue is not able to smother weeds effectively.

agricultural practices can be summarized under the term, and because a farmer might choose to till the land every few years to control weeds, while practising no-till in other years. This could reverse any possible carbon sequestration.

Because there are a number of terms for the practice related to no-till (low-till, zero-till, conservation tillage), some of which involve a certain amount of tillage⁴⁵ we have decided to use the term *chemical no-till* to describe no-till practices for which there is data available. These rely on the application of non-selective/broad spectrum/ herbicides (like glyphosate and glufosinate), often in combination with GM crops.

Current estimates amount to about 100 million ha of notill world-wide: mainly in North and South America, and mainly chemical no-till with GM crops. While in South America, NT is pervasive, there is a large potential for increase in the US, besides Russia and Ukraine.⁴⁶

4.1 Can No-till reduce CO₂ in the atmosphere through storage in soil sinks

A number of international organisations claim that no-till can have highly beneficial effects by reducing greenhouse gas emissions and helping to store carbon in the soils. The Food and Agricultural Organisation (FAO) states in one of its 2009 submissions to the UNFCCC:

"Soil carbon sequestration through the restoration of soil organic matter can further reverse land degradation and restore soil "health" through restoring soil biota and the array of associated ecological processes. In particular, through improved soil water storage and nutrient cycling, land use practices that sequester carbon will also contribute to stabilising or enhancing food production and optimizing the use of synthetic fertilizer inputs, thereby reducing emissions of nitrous oxides from

44 Rodale Institute (2009): No-till revolution. http://www.rodaleinstitute.org/no-till_revolution ; accessed 11.9.2009. agricultural land. Conservation tillage practices also reduce significantly the use of fuel and hence gaseous emissions."⁴⁷

A similar call from the International Federation of Agricultural Producers (IFAP)⁴⁸ proposes carbon sequestration through (among others) no or reduced tillage.

As yet, there is no certainty as to the impact of NT farming on the soil. The 2006 IPCC *Greenhouse Gas Inventory Guidelines* suggest that conversion from conventional tillage (CT) to NT systems would lead to a 10% increase in the estimated sequestration of carbon in the soil, while quoting an error margin of 4-50% depending on climate zone.⁴⁹ However, the IPCC's more recent Assessment Report 4 is much more cautious:

"Since soil disturbance tends to stimulate soil carbon losses through enhanced decomposition and erosion, reduced- or no-till agriculture often results in soil carbon gain, but not always. Adopting reduced- or no-till may also affect N₂O, emissions but the net effects are inconsistent and not well-quantified globally."⁵⁰

Indeed, recent studies make it clear that there is, as yet,little understanding of how tillage controls soil respiration in relation to CO_2 and N_2O emissions [and denitrification] [Same as N2O fluxes?]. Higher CO_2 and N_2O fluxes were registered in NT soil than in CT soil irrespective of nitrogen source and soil moisture content.⁵¹

49 with a 5% uncertainty factor

Harbinson (2001): Conservation tillage and climate change. Biotechnology and Development Monitor 46: 12-17.

⁴⁶ Rolf Derpsch, Theodor Friedrich (2009): Global Overview of Conservation Agriculture Adoption. Paper presented to IV World Congress on Conservation Agriculture, New Delhi, India, February 2009 http://www.fao.org/ag/ca/doc/Global-overview-CA-adoption-Derpschcomp2.pdf

⁴⁷ FAO (2009): The carbon sequestration potential in agricultural soils. Submission by Food and Agriculture Organization of the United Nations to AWG-LCA3; 19.8.2009; http://unfccc.int/resource/docs/2008/smsn/igo/010.pdf

⁴⁸ IFAP (2008): Challenges and opportunities for mitigation in the agricultural sector. Submission to the Chair of the AWG-LCA with respect to the fulfilment of the Bali Action Plan and taking into consideration document FCCC/TP/2008/8 http://unfccc.int/resource/docs/2009/smsn/ngo/085.pdf

⁵⁰ Smith P. et al. (2007): Agriculture. In: IPCC (eds.): Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Chapter 8. http://www.ipcc.ch/ipccreports/ar4wg3.htm

⁵¹ Liu X.J., Mosier A.R., Halvorson A.D., Reule C.A. & Zhang F. (2007): Dinitrogen and N2O emission in arable soils: Effect of tillage, N source and soil moisture. Journal of Soil Biology and

Box 4.1: Chemical NT soybean cultivation in Argentina

In Argentina, nearly 17 million hectares are cultivated with GM soya under chemcial no-till systems at present (2009). This represents 20% of the total acreage under no-till practice worldwide.¹

Due to the increased availability of seeds and technology and due to a lower price for agrochemicals, GM agriculture was adopted in Argentina in the 1990s. The NT system was perceived as a solution to the soil degradation present in the Pampas region.² At that time, NT was mainly known for the conservation of organic matter and better water utilization.

However, after more than ten years of using NT for the cultivation of mainly GM soya,³ profoundly negative environmental impacts are occurring. The use of pesticides induces resistance in weeds, leading to an increase in the quantity and variety of pesticides used. Soil fertility is declining due to intense production, and soil demineralisation is addressed by the use of synthetic fertilisers, The production of such fertilizers itself is energy intensive and some of them are generating greenhouse gase (GHG) emissions after being applied to the soil.. The large quantity of chemicals, sprayed from tractors and planes, has negative impacts on biodiversity, water, soil, human and animal health. Furthermore, the adaptation of NT methods have been directly linked to greater deforestation in the seasonally dry forests in the north-west and thus to accelerated regional and global climate change.⁴

49% of all soya in Argentina is grown as monoculture without rotation, while 30.6% is rotated with wheat and a much smaller proportion with maize (corn) or sunflower.⁵ Reports from two Argentinian regions show that productivity decreased by 32% during the 2008/09 season, due to drought and a conflict between farmers and government over soy bean taxation. Soy acreage is expected to increase to 19 million hectares again in 2009/10 because soya is still cheaper than other crops to produce.

However, the economics of NT soya production externalize a range of cost factors. Not included are the long term soil fertility loss, the cost of decontaminating polluted water supplies and costs to the health care system related to human and animal illnesses emerging from this production system.

- 1 AAPRESID (2008): Siembra directa, con visión holística. 17.1.2008; accessed on 18.5.2009. http://www.concienciarural.com.ar/articulos/agricultura/siembra-directa-con-vision-holistica/art283.aspx
- 2 Casas R. (2003): Sustentabilidad de la agricultura en la región pampeana. Clima y Agua, Castelar. Instituto Nacional de Tecnología Agropecuaria; http://www.inta.gov.ar/balcarce/info/documentos/recnat/suelos/casas.htm
- 3 The lack of rotations in the Argentinean soya region it is mainly due to two factors: (a) high international demand and the comparative greater profits from soya, and (b) productive lands are rented to exogenous companies, who are not looking at soil as a resource to preserve.
- 4 Grau H.R., Gasparri N.I. & Aide T.M. (2005): Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environmental Conservation 32: 140-148.
- 5 Panichelli L., Dauriat A. & Gnansounou E. (2008): Life cycle assessment of soybean-based biodiesel in Argentina for export. The International Journal of Life Cycle Assessment 14: 144-159; http://www.springerlink.com/content/gg31272407530111

Furthermore new studies have cast doubt on the carbon sequestration claims.⁵² A review of studies on carbon sequestration in NT systems found that sampling protocols produced biased results. In the majority of the studies reviewed by Baker *et al.*,⁵³ soils were only

Biochemistry 39: 2362-2370.

sampled to a depth of 30 cm or less. The few studies that sampled at deeper levels found that NT showed no consistent build up of soil organic carbon. Conversely studies that involved deeper sampling generally show no carbon sequestration advantage for conservation tillage, and in fact often show more carbon in conventionally tilled soils.

John M. Baker, research leader at the USDA Agricultural Research Service, Soil and Water Management Unit, concluded in his 2007 study on non-tillage and carbon sequestration that the evidence for increased carbon sequestration in NT systems is not conclusive.

⁵² Yang X.M., Drury C.F., Wander M.M. & Kay B.D. (2008): Evaluating the effect of tillage on carbon sequestration using the minimum detectable difference concept. Pedosphere 18: 421-430. Franzluebbers A.J. & Studemann J.A. (2009): Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agriculture, Ecosystems and Environment 129: 28-36.

⁵³ Baker J.M., Ochsner T.E., Venterea R.T. & Griffis T.J. (2007): *Tillage and soil carbon sequestration – what do we really know?* Agriculture, Ecosystems and Environment 118: 1-5.

Box 4.2: Chemical NT of cotton and soya in the USA

According to press reports from the USA in 2009, hundreds of thousands of acres of cotton and soybean fields have been infested with Palmer pigweed resistant to glyphosate (Roundup) used for chemical NT.

"In Arkansas alone, the weed has invaded some 750,000 acres of crops, including half the 250,000 acres of cotton. In Tennessee, nearly 500,000 acres have some degree of infestation [...]. The infestation is cutting farmers' cotton yields by up to one-third and in some cases doubling or tripling their weed-control costs. [...] Rising up to 10 feet tall, with stalks as thick as baseball bats, the plant also can wreck any mechanical cotton-pickers sent into heavily infested fields. Since it outcompetes cotton for water and other resources, infestation easily can cut yields by 300 pounds per acre."¹

Already in 2005, Monsanto, the producer of Roundup and of the herbicide tolerant crop seeds had advised farmers to use three additional herbicide applications against possibly resistant pigweed. That this problem was to be expected is illustrated by the fact that as early as 2001 Monsanto was granted a patent on tank mixes of glyphosate (Roundup) with other herbicides.²

By now at least 16 different weed species are listed as herbicide resistant to glyphosate (Roundup) on several continents. Some of them show combined resistances of up to four herbicides.³

- 1 Chalier T. (2009): 'The perfect weed': An old botanical nemesis refuses to be rounded up. Memphis Commercial Appeal, 9.8.2009; http://www.commercialappeal.com/news/2009/aug/09/the-perfect-weed/
- 2 Dechant D. (2003): *Monsanto sees opportunity in glyphosate resistant volunteers*. CropChoice.com http://www.cropchoice.com/leadstry9204.html?recid=1299 accessed 13.9.2009
- 3 WeedSience: *Glycines (G/9) resistant weeds*. http://www.weedscience.org/Summary/UspeciesMOA.asp? IstMOAID=12&FmHRACGroup=Go; accessed 24.8.2009

"It is premature to predict the C sequestration potential of agricultural systems on the basis of projected changes in tillage practices, or to stimulate such changes with policies or market instruments designed to sequester C. The risk to thescientific community is a loss of credibility that may make it more difficult to foster adoption of other land use and management practices that demonstrably mitigate rising atmospheric concentrations of greenhouse gases."⁵⁴

4.2 Effects on the soil

It is clear that the climate benefits of chemical no-till are still in doubt, and at the same time there are growing concerns about the impacts of NT and the herbicide glyphosate on the soil, on water resources and weeds and pests. In addition there are serious impacts on local populations' health and food security, with many being driven off the land altogether. Most experiences with environmental effects of chemical NT comes from Argentina where due to local political and economic factors GM herbicide tolerant soybeans using glyphosate (Roundup) have been cultivated on a massive scale since the 1990s (see box 4.1). Recent evidence of agricultural problems also come from NT systems with GM cotton in the US (seebox 4.2).

54 Baker et al. 2007, see above.

Soil demineralisation and fertilizers: The application of synthetic fertilisers in agriculture is identified by the IPCC as a major contributor to N_20 emissions. N_20 is around 300 times as powerful a greenhouse gas as carbon dioxide over a century.

"Worldwide consumption of synthetic N fertilizers has increased by about 150% since 1970 to about 82 Tg N/year in 1996. Animal wastes used as fertilizer supplied an estimated additional 65 Tg N/year in 1996, compared with 37 Tg N/year in 1950. This increase in N use is now widely recognised as a major factor in the increase in N_2O emissions indicated by increases in atmospheric concentration."⁵⁵

Contrary to the assumption that because soya is a nitrogen fixing plant, it will improve soil nitrogen levels, continued increases in soya yields in the Argentinean Pampas region have been accompanied by steep declines in soil nitrogen (N), phosphorus (P), potassium (K) and sulphur (S). It appears that there is insufficient nitrogen in the soil for the requirements of the GM soya

⁵⁵ Smith K, Bouwman L. & Braatz B. (2003): N₂O: Direct emissions from agricultural soils. In: IPCC (eds): Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/gp/bgp /4_5_N2O_Agricultural_Soils.pdf

monocultures, which means both a decline in soil fertility and the need for substantial applications of chemical fertiliser.

Soil compaction is due both to no-till practices and to the weight of the machinery used.⁵⁶ This causes numerous problems such as water-logging and reduction in fertility because the nutrients at deeper soil levels are not brought up by tillage to a level where the crop roots can reach them.⁵⁷ Compacted soils also contribute to higher N2O emissions because de-nitrification is more intense in water-filled pore spaces. A study from the Argentinian Pampas suggests that higher N2O emissions in NT managed agricultural systems of the humid portion of the Pampas might cancel out the benefits of carbon sequestration within several decades.⁵⁸

Chemical no-till agriculture also contaminates soil and water and damages biodiversity in aquatic systems, soils and all ecosystems, which may well lead to less resilience in the face of climate change. In some parts of Argentina and in the Brazilian Amazon, no-till is connected with increased rates of forest clearance with obvious impacts on climate stability and rainfall. GM agriculture, through its reliance on the continuous application of a single herbicide, has also facilitated the development of herbicide tolerant weeds which are an increasing problem. Pest patterns have also changed, with new pests emerging. Both these phenomena have led to increased applications of herbicides and the use of a wide range of suplementary herbicides and other agrotoxics.

It is also claimed that no-till agriculture means less fuel consumed because of "single pass" tractor use for planting,⁵⁹ but there is little data to support this. On the

contrary, applications of pesticides have increased to 3 or 4 per season, and herbicide applications from airplanes are common in chemical no-till.

4.3 No-till offset propositions

All this shows that even though it was initially claimed that chemical NT could reduce greenhouse gas emissions by not leaving soil vulnerable to erosion and sequestering carbon in the soil, the practice can also increase greenhouse gas emissions through the use of additional agrochemicals (herbicides, fertilizers) and through higher N2O emissions where soils have become waterlogged and by making soya production at the expense of forests more lucrative in some areas.

Despite the current uncertainty, international organisations are calling for chemical NT farming to be considered a carbon sink activity and for carbon offsets to be permitted for it. Reasons put forward include climate change mitigation and the reversal of environmental degradation in agricultural soils.⁶⁰

Argentina is the country with the largest proportion of chemical (GM) no-till in the world. It is therefore not surprising perhaps that in 1997, the Argentinean National Inventory report for the UNFCCC accepted the soils under no-till GM soya fields as possible carbon sinks. In its report the no-till producers association AAPRESID was the UNFCCC inventory rapporteur for the emissions for the change for the use of land.⁶¹

Argentina has been asking the UNFCCC since 1998 for the introduction of no-till agriculture in the carbon market "as it is in the country's interest as world-wide leader of NT"⁶² - at least according to Hernan Carlino, Argentinean member of the UNFCCC Executive Board Committee of the Clean Development Mechanism (CDM) and until recently chairman of the CDM Accreditation Panel.

⁵⁶ Gerster G., Bacigaluppo S., De Battista J. & Cerana J. (2008): Distribución de la Compactación en el Perfil del Suelo utilizando diferentes Neumáticos. Consecuencias sobre el Enraizamiento del Cultivo de Soja. Instituto Nacional de Tecnologia Agropecuaria, Econoagro; http://www.econoagro.com:80/verArticulo.php? contenidoID=646

 ⁵⁷ ConCiencia (2005): ¿Quien se acuerda del suelo? Universidad Nacional del Litoral, Santa Fe, Argentina, ConCiencia Nro.13, 4.2.2005; http://www.rel-uita.org/agricultura/suelo.htm

⁵⁸ Steinbach H.S. & Alvarez R. (2006): Changes in soil Organic carbon contents and N₂O emissions after introduction of no-till in Pampean agroecosystems. Journal of Environmental Quality 35: 3-13

⁵⁹ See for example Monsanto (2006): Conservation tillage. http://www.monsanto.com/biotech-gmo/asp/topic.asp? id=ConservationTillage

⁶⁰ FAO (2009): The carbon sequestration potential in agricultural soils. Submission by Food and Agriculture Organization of the United to AWG-LCA3; 19.8.2009; http://unfccc.int/resource/docs/2008/smsn/igo/010.pdf

⁶¹ Ministerio de desarrollo social y medio ambiente Secretaria de Desarrollo Sustentable ypolitica ambiental (1999): Inventario de Emisiones de Gases de Efecto Invernadero de la Republica Argentina. Proyecto Metas de Emision Arg/99/003-PNUD-SRNyDS;

http://www.medioambiente.gov.ar/archivos/web/UCC/File/inventar io%20de%20gases%20en%20la%20argentina%201997.pdf

⁶² clarin.com (2005): El agro juega limpio. Clarin, 25.6.2005; http://www.clarin.com/suplementos/rural/2005/06/25/r-00901.htm

In August 2008, FAO made a submission to the UNFCCC to propose a number of practices to reduce the rate of CO_2 released through soil respiration and to increase soil carbon sequestration, including conservation tillage (NT).⁶³ In October 2008 this was followed by the publication of a briefing with the title *Framework for Valuing Soil Carbon as a Critical Ecosystem Service*, published by FAO and the Conservation Technology Information Center (CTIC). The two organisations called for a wider adoption of conservation agricultural systems and recommend the inclusion of carbon offsets from conservation agriculture.⁶⁴

The biotech industry is well represented at the CTIC board of directors: Monsanto, Syngenta America and Crop Life America all have seats. This fact endorses the conclusion that the FAO-CTIC call for agricultural offsets aims mainly to favour GM crops.

Conclusion

The capacity to sequester carbon in soil under no-till agriculture is not conclusively proven and could also be undone by greater N2O emissions. Moreover, the application of heavy machinery, herbicides, and herbicide resistant GM crops have led to soil and water contamination and soil compaction. The fact that in such an inconclusive situation, the FAO calls for offsets from no-till agriculture together with the biotech industry shows vested interests that compromise the independence required from a UN organisation.

5. Biochar: What can we expect from adding charcoal to the soil?⁶⁵

Biochar is fine-grained charcoal when it is applied to soil. It is a euphemistic term coined by Peter Read of the

http://www.biofuelwatch.org.uk/docs/biocharbriefing.pdf

Internaitonal Biochar Initiative. Biochar is generally derived as a by-product of pyrolysis (see below) although research programmes are producing biochar by steam-heating biomass under high pressure (hydrothermal carbonisation or HTC). The type of carbon contained in biochar is **black carbon**.

Biomass pyrolysis is a type of bioenergy production in which biomass is exposed to high temperatures for short periods, with little or no oxygen. Besides biochar, this produces syngas and bio-oil, both of which can be used for heat and power or be further refined into road transport or possibly aviation fuel. Pyrolysis can be done in large plants or small kilns or stoves.

5.1 Proposals and claims

Fourteen governments as well as the United Nations Convention to Combat Desertification (UNCCD) are formally calling for 'biochar' to play a significant role in a post-2012 climate change agreement and in carbon trading. They have signed up to claims by the International Biochar Initiative (IBI), a lobby organisation made up largely of biochar entrepreneurs as well as scientists, many of them with close industry links.⁶⁶ The IBI regularly lobbies delegates at UNFCCC meetings. However, the United Nations Environment Programme (UNEP) has warned that biochar is a 'a new and poorly understood technology', that feedstock for large-scale biomass is likely to come from 'biofuels' (agrofuels), i.e. dedicated tree and crop plantations which "should be approached with great caution" and that the impacts on biodiversity and long-term agricultural sustainability are unknown.⁶⁷ When they finalised their most recent Assessment Report 4, the IPCC did not find sufficient evidence to reach any conclusion about biochar.

The IBI argues that applying charcoal to soil creates a reliable and permanent 'carbon sink' and mitigates climate change. It also argues that biochar makes soils more fertile and retains more water in soil, thus helping farmers adapt to climate change. Proposals for 'climate change mitigation' with biochar involve such large quantities of biomass that at least 500 million hectares of dedicated

⁶³ FAO (2008): Submission by Food and Agriculture Organization of the United Nations, 3rd Session of the Ad Hoc Working Group on Long-term Cooperative Action under the Convention (AWG-LCA3), Accra, 21-27 August 2008. accessed 26.5.2009; http://unfccc.int/resource/docs/2008/smsn/igo/010.pdf

⁶⁴ FAO (2008): Soil Carbon Sequestration In Conservation Agriculture. A Framework for Valuing Soil Carbon as a Critical Ecosystem. Summary document derived from the Conservation Agriculture Carbon Offset Consultation, West Lafayette, USA, 28-30.10.2008; http://www.fao.org/ag/ca/doc/CA_SSC_Overview.pdf

⁶⁵ This chapter is based on the briefing paper: Ernsting A. & Smolker R. (2009): Biochar for Climate Change Mitigation: Fact or Fiction? Biofuelwatch;

⁶⁶ For membership of the IBI Board and Science Advisory Committee see http://www.biochar-international.org/about/board

 ⁶⁷ UNEP (2009):The Natural Fix? The role of ecosystems in climate mitigation.
http://www.unep.org/publications/search/pub_details_s.asp?
ID=4027

Box 5.1: terra preta

Terra preta is now being overexploited and, since the indigenous practices which created it have largely been lost, we lack the knowledge of how create it or to maintain its fertility, nor can we assume that successful practices in a particular context can be transferred elsewhere.

Agrobiodiversity and the use of diverse organic residues were almost certainly important aspects of the sustainability of the *terra preta* system. Because of the fertility of the soils and the centuries of agricultural practices by indigenous peoples, a special ecosystem has developed at Amazonian Dark Earth (ADE) sites. The biodiversity of the soil itself appears to be unique as well. Recent evidence revealed a distinct and unique microbiological diversity associated with ADE. The specific habitat in ADE supported and preserved micro-organisms that are absent in surrounding ecosystems.

However, also ADE degrades, and it appears from the limited data currently available that after 10-40 years of intensive exploitation ADE soils lose their high nutrient availability and some of their organic carbon and become unproductive.¹

plantations would be required, as well as agricultural land and forests being stripped of so-called 'residues'. As the experience with agrofuels shows, the creation of a large new market for biomass can be expected to move the 'agricultural frontier' (including tree plantations) further into forests and other ecosystems, as well as displacing communities and food production, and causing agricultural intensification leading to more nitrous oxide emissions. The overall impact on climate, the environment and on people of such increased demand for land and biomass are likely to undo any possible and unproven benefits from small-scale use.

Studies by leading IBI members themselves, point to high levels of uncertainty regarding the claims made about biochar, due in large part to a lack of rigorous scientific field studies. This applies also to small-scale biochar use.

Is biochar carbon negative?

Biochar lobbyists describe bioenergy with biochar production as 'carbon-negative.' This is based on a belief that biomass burning is carbon neutral or close to it, i.e. that it results in no significant greenhouse gas emissions since emissions during combustion are supposedly offset by new growth. Such a belief ignores the wider level impacts associated with the conversion of large areas of land and thus, directly or indirectly, the destruction of ecosystems which are essential for regulating the climate. Where "wastes and residues" are used, the impacts on climate and ecosystems of removing these crucial amounts of organic matter from soils are ignored, even though there is little 'waste' available for biochar anyway. Given the climate impacts of ecosystems conversion and forest and soil degradation, any large scale demand for biomass cannot reasonably be considered carbon neutral. Biochar advocates, however, tend to ignore this and further claim that the carbon contained in biochar will permanently remain in soils and that the technology can therefore be considered carbon negative because it would sink CO_2 from the atmosphere. Both the carbon neutral and the carbon negative assumptions are highly dubious.

Most of the studies on which claims about the properties of biochar are based, have been done in laboratories or greenhouses, some of them with sterile soils. There are very few field studies and only one peer-reviewed field experiment which looks at (short-term) impacts on soil fertility and soil carbon.⁶⁸ This still remains the case seven years after the first biochar company, Eprida, was founded. By analogy, this would be like releasing a new pharmaceutical product without clinical testing.

What is known about the impact of charcoal on soil fertility and carbon sequestration?

While carbon in charcoal can remain in soil for long periods, it can also be lost within decades, a few years, or even faster. Soil scientists consider black carbon from

¹ FAO: terra preta –Amazonian Dark Earths (Brazil). http://www.fao.org/nr/giahs/other-systems/other/america/terrapreta /detailed-information2/en/; accessed 24.8.2009

⁶⁸ Lehmann et al. (2003): Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249: 343-357; and Steiner et al. (2007): Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291:275–290; based on the same field experiment near Manaus.

fires to be identical with or at least comparable to black carbon in biochar. Charcoal residues from wildfires and other sources have been found in soils which date back thousands of years, for example in the North American prairies, in Germany and Australia. It is therefore certain that some carbon in charcoal can - under certain circumstances that we do not yet understand - be retained in soils for thousands of years. Eventually however, it will be released as CO_2 and warm the atmosphere. The fact that some carbon from charcoal remains in the soil however, does not mean all or even most of it will.

Black carbon can be degraded and turned into CO₂ either through chemical processes or by microbes, and some types of carbon within charcoal are degraded far more easily than others.⁶⁹ Johannes Lehmann, Chair of the IBI Board, claims that only 1-20% of the carbon in charcoal will be lost this way in the short term and that the remainder will stay in the soil for thousands of years.⁷⁰ Yet, one study about the fate of black carbon from vegetation burning in Western Kenya suggests that 72% of the carbon was lost within 20-30 years.⁷¹ Furthermore, in a recent (unpublished) study⁷² researchers were unable to show that soil in old forests which have burned regularly over centuries hold more black carbon than soils from young forests which have not experienced repeated burning. The authors speculate that the black carbon could have oxidised (and thus entered the atmosphere as CO₂) during subsequent fires, or alternatively could have been distributed more widely instead of having been lost from the soil. The 'missing' black carbon could of course have been transported outside the area. However, a study which looked at a global black carbon budget found that far more black carbon in charcoal must be produced through wildfires than can be found in soils or in marine sediments.⁷³ An open question is also how biochar has different impacts in different soil types.

There is some evidence that the types of carbon in charcoal which degrade fastest might be those which can increase plant yields in the short term when used together with organic or synthetic fertilisers.⁷⁴ In other words: there could be a trade-off between biochar which can raise soil fertility and biochar which can sequester carbon although the lack of field studies makes it impossible to be certain. Moreover, soil microbes have been found which can metabolise black carbon and thus turn it into CO₂.⁷⁵ Conceivably, if biochar was applied to large areas of land, these microbes might multiply and break down black carbon more easily than currently occurs; others might adapt.

Another question is whether adding biochar to soil can cause pre-existing soil organic carbon to be degraded and emitted as carbon dioxide. This possibility was suggested by a study in which charcoal in mesh bags was placed into boreal forest soils and significant amounts of carbon were lost which the authors concluded must have been soil organic carbon. They suggest that the biochar would have stimulated greater microbial activity which would have degraded soil organic carbon and have caused it to be emitted as carbon dioxide.⁷⁶

This is further supported by a laboratory study by Rogovska *et al.* (2008) which showed that adding charcoal to soil increased soil respiration and thus carbon dioxide emissions.⁷⁷ The authors hypothesized that this effect would normally be offset by greater plant growth adding new carbon to soils; however during the study no plants were grown. Initial results from a Danish study

77 Rogovska et al. (2008): Greenhouse gas emissions from soils as affected by addition of biochar. presentation at SSSA Conference, October 2008. http://www.biocharinternational.org/images/Rogovska_et_al.pdf

⁶⁹ Cheng C., Lehmann J.C., Thies J.E., Burton S.D. & Engelhard M.H. (2006): Oxidation of black carbon by biotic and abiotic processes, Organic Geochemistry 37:1477-1488.

⁷⁰ Lehmann et al. (2008): Stability of black carbon/biochar. presentation at SSSA Conference, October 2008; http://www.biocharinternational.org/images/Lehmann_Biochar_ASA2008.pdf

⁷¹ Nguyen et al. (2003): Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89: 295-308.

⁷² Lorenz et al. (2008): Black carbon in seasonally dry forests of Costa Rica. presentation at SSSA Conference, October 2008

⁷³ C.A. Masiello (2004): New directions in black carbon organic chemistry, Marine Chemistry 92

⁷⁴ Novak et al. (2008) Influence of pecan-derived biochar on chemical properties of a Norfolk loamy sand soil. presentation at SSSA Conference, October 2008.

⁷⁵ Hammer U., Marschner B., Brodowski S. & Ameung, W. (2004): Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry 35: 823-830.

^{Wardle D.A., Nilson M.Ch. & Zackrisson O. (2008): Fire-Derived} Charcoal Causes Loss of Forest Humus. Science 320(5876): 629; also see comment by J. Lehmann & S. Sohi, 10.1126/science.1160005 and authors' response. 10.1126/science.1160750; http://www.sciencemag.org /cgi/content/abstract/320/5876/629

also suggest that charcoal addition leads to greater losses of existing soil organic carbon.⁷⁸

Although some studies suggest that charcoal additions can reduce nitrous oxide emissions, the evidence on this is neither conclusive nor consistent.⁷⁹

Is charcoal a fertiliser?

Fresh biochar contains some ash which holds nutrients and minerals that can boost plant growth - the main for swidden (slash-and-burn) agriculture. reason However, soils treated in this manner are depleted after one or two harvests. Biochar proponents recognise that nutrients and minerals are quickly depleted, but maintain that biochar can improve yields nonetheless by enhancing the uptake of nutrients from other fertilizers, improving water retention and encouraging beneficial fungi. This has been proven for terra preta, however the evidence for modern biochar is, yet again, inconclusive. In some cases, biochar can inhibit rather than aid beneficial fungi.80 Furthermore, the lack of long-term field studies means that there is little evidence extending beyond the initial period when charcoal still retains nutrients and minerals. Even during this initial period, it has been shown that charcoal can in some cases reduce plant growth, depending on the type of biochar and the crops on which it is used.

Where biochar does increase yields - at least in the shortterm - it appears to do so mainly by working in conjunction with nitrogen fertilisers.⁸¹ Hence, companies such as Eprida are looking to produce not just charcoal but a combination of charcoal with nitrogen and other compounds scrubbed from flue gases of coal power plants. Such a technology bears little resemblance with *terra preta* and instead perpetuates fossil fuel burning and the use of fossil-fuel based fertilisers in industrial agriculture.

5.2 Airborne black carbon increases global warming

Although black carbon is being discussed as a carbon sink while it remains in the soil, airborne black carbon is a major cause of global warming. Proportionally, airborne black carbon has a global warming impact which is 500-800 times greater than that of CO₂ over a century.⁸² Although it is not a greenhouse gas, black carbon reduces albedo, i.e. it makes the earth less reflective of solar energy. The small, dark particles absorb heat and contribute to ice melting in the Arctic and elsewhere.

Biochar advocates argue that charcoal can help to reduce black carbon emissions if open cooking fires are replaced by charcoal-making stoves. However, any type of 'clean' biomass stove will reduce atmospheric black carbon emissions - not just charcoal making ones. Some also argue that biochar can reduce black carbon emissions from slash-and-burn fires by making soils permanently fertile. But as discussed above, such fertility improvements are far from proven.

Moreover, a serious concern is that some of the more finely powdered charcoal will become airborne during application and handling. On the one hand tilling biochar deep into soils could minimise biochar losses. On the other hand, tilling can damage soil structures and could cause breakdown and loss of pre-existing soil carbon. These problems are well illustrated in pictures from a study commissioned by the biochar company *Dynamotive*⁸³ which show large clouds of charcoal dust during transport and application. The researchers report that 30% of the charcoal was lost in this manner. The significance of airborne particles also illustrated by the fact that dust carried from the Sahara is routinely

⁷⁸ Wilson Bruun et al. (2008): Biochar in fertile clay soil: impact on carbon mineralization, microbial biomass and GHG emissions. poster at SASS conference; http://www.biocharinternational.org/images/Biochar_in_fertile_clay_soil-Esben_Bruun,_Denmark.pdf

⁷⁹ Reijnders L. (in press): Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels? Energy Policy: doi:10.1016/j.enpol.2009.03.047

⁸⁰ See for example Warnock et al. (2008): Non-herbaceous biochars (BC) exert neutral or negative influence on arbuscular mycorrhizal fungal (AMF) abundance. presentation at SSSA Conference, October 2008. http://www.biocharinternational.org/images/Warnock_SSSA_2008_Biochar_Presentati on_V._1.pdf

⁸¹ See for example Chan K.Y., Van Zwieten L., Meszaros I., DownieA. & Joseph S. (2007): Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45: 629-634.

⁸² See: Bond T.C. & Sun H. (2005): Can Reducing Black Carbon Emissions Counteract Global Warming? Environmental Science & Technology 39: 5921-5926;and James H., Sato M., Kharecha P., Russel G., Lea D.W. & Siddal M. (2007): Climate Change and Trace Gases. Philosophical Transactions of the Royal Society 365(1856):1925-1954.

⁸³ Husk B. (2009): Preliminary Evaluation of Biochar in a Commercial Farming Operation in Canada. Study by BlueLeaf Inc. http://www.blue-leaf.ca/main-en/report_a3.php

deposited in the Amazon Basin. Furthermore, biochar particles can quickly erode to a smaller size, similar to that of black soot. There is a risk of such small particles becoming airborne due to soil erosion. Even if a small percentage of the biochar that is lost becomes airborne, it would result in biochar worsening global warming irrespective of any carbon sequestration.

5.3 The myth of 'sustainable' small-scale biochar

Several biochar advocates and companies, such as Carbon Gold, now promote 'small-scale' biochar, particularly from 'waste and residues', perhaps at least partly in response to growing concerns about the move towards large-scale industrial production. The image of small-scale organic, permaculture-type biochar is part of a marketing strategy by the IBI. Biochar marketing company Genesis Industries (eGen openly speaks about strategies for 'guerrilla marketing' through a 'green' image and defines the key marketing slogan: "to help the small farmer gain greater financial security through increase in productivity and carbon credits, to feed the poor and starving, reduce carbon dioxide in the atmosphere and provide conservation for endangered species". Yet the aim of this strategy as they explain on the same page is to "help owners of Eprida [pyrolysis] machines market wholesale and retail products utilising the power of our technology".84 Thus their website shows that this company regards the message that biochar will be of value to small farmers as an essential part of a commercial marketing strategy.

However, the picture regarding soil fertility and carbon in soils is the same regardless of the scale at which biochar is used.

A simple calculation shows why the idea of farmers and gardeners improving the fertility of their land with biochar is problematic, particularly in the case of DIY biochar⁸⁵ which is especially inefficient: it tends to convert just 10-20% of the biomass carbon into charcoal

with the remainder being emitted as carbon dioxide, usually uncaptured. Exceptions are charcoal-making stoves, where the energy is used for cooking and up to 30% of biomass carbon is kept as charcoal. 50% conversion of biomass carbon to biochar is the maximum, possible only in larger more expensive pyrolysis plants. Between 4 and 20 tonnes of dry wood (more of other biomass) would thus be needed to create one tonne of biochar.

However, in studies which have found short-term soil fertility benefit from biochar some 10-20 tonnes of charcoal were added to one hectare, as well as organic or synthetic fertilisers. This is far more than could be obtained from residues. For example, an industry estimate of corn stover is that one hectare yields around 5.66 tonnes of corn stover⁸⁶ annually, but only 2.83 tonnes which could be safely harvested.⁸⁷ Clearly, therefore, any (short-term) fertilisation with biochar would require residue removal over a much larger area than the land to which biochar is applied as well as the use of other fertilisers. On a larger scale, it would require dedicated plantations. In addition farmers would lose the option of using residues as animal feed or for other purposes. Stripping the soil to char organic residues is likely to leave farmers with increasingly depleted soils and is fundamentally different from the approach used by the farmers who created terra preta.

5.4 Large scale biochar

Biochar advocates claim that they do not advocate deforestation for biochar plantations. However, the 1 billion tonnes of carbon sequestration per year quoted as a 'lower range' to address climate change make further pressure on ecosystems and land inevitable. Johannes Lehmann (IBI) for example states that the greatest potential would come from dedicated crops and trees,⁸⁸ and a discussion at the 2008 IBI Conference suggested that plantations would be required for scaling up biochar.⁸⁹ Advocates and companies promoting agrofuels also claim that they do not advocate practices that drive

⁸⁴ Genesis Industries: Marketing Your CO2 Neg products. http://www.egenindustries.com/Marketing_your_CO2_Negitive_Pr oducts.php, accessed 19.8.2009

⁸⁵ Numerous DIY manuals for small scale biochar can be found online, and related photos and blog postings show how (inadvertently) problems are caused by faulty set-ups. See for example http://www.biocharfertilization.com/ or http://www.instructables.com/id/Make_your_own_BioChar_and_T erra_Preta/

⁸⁶ Corn stover is the leaves and stalks of maize left on the field after harvest, similar to straw.

⁸⁷ Agriculture and Agri-Food Canada: Corn Stover. www4.agr.gc.ca/ AAFC-AAC/display-afficher.do?id=1226595533096&lang=eng accessed 19.8.2009

⁸⁸ Lehmann J., Gaunt J. & Rondon M. (2006): *Biochar sequestration in terrestrial ecosystems*. Mitigation and Adaptation Strategies for Global Change 11: 403–427.

deforestation or degradation of ecosystems. Such impacts are well known to occur directly as well as indirectly. Meanwhile, demand for agrofuels is moving the agricultural frontier further into tropical forests, destroying remaining biodiversity, leading to the displacement and eviction of growing numbers of indigenous peoples, small farming communities and displacing food production. Agrofuels and biochar can be produced from biomass using the same processes (pyrolysis). Together biochar and agrofuel provide a potent means of further accelerating the destruction already caused by agrofuels alone.

This was - and still is - the major concern behind a declaration "Biochar: A new big threat to people, land and ecosystems" signed by over 150 organisations since April 2009.⁹⁰

6. Industrial livestock production: Intensification is not an option

Livestock farming is a major producer of greenhouse gases: It is responsible for nearly 80% of all agriculturerelated emissions and represents a larger share (18%) of total human-related emissions than transport (14%).⁹¹ These figures include the emissions caused by the production of animal feed, with a third of cultivated land being used to grow grain for livestock,⁹² but they exclude the high carbon emissions that stem from clearing forests and other ecosystems to raise livestock. The Food and Agricultural Organisation (FAO) points out the fact that livestock's real contribution to greenhouse gas emissions is even higher than the figures suggest due to the difficulty of estimating emissions from livestock-related land use changes.⁹³ Most of the deforestation in the

89 IBI (2008): IBI Conference 2008; Session D: Biochar and bioenergy from purpose-grown crops and waste feedstocks/waste management. http://www.biocharinternational.org/images/IBI_2008_Conference_Parallel_Discussio n_Session_D.pdf

- 90 Declaration: 'Biochar', a new big threat to people, land, and ecosystems. 26.3.2009; http://www.regenwald.org/international/englisch/news.php? id=1226
- 91 Steinfeld et al. (2006)
- 92 90% of soya is used to produce animal feed.
- 93 Steinfeld H., Gerber P., Wassenaar T., Castel V., Rosales M. & de Haan C. (2006): *Livestock's long shadow. Environmental issues* and options. FAO, Rome. Steinfeld et al estimate that lifestock contribute to as much as 37% greenhouse gases is wrong and MUST be deleted. No such figure exists. In contrary, it is too hard

Amazon is caused by clearance for cattle pasture, nearly 80% according to a recent Greenpeace report.⁹⁴

As a result, it is hardly surprising that considerable attention is focused on the greenhouse gas footprint of livestock farming. The particular greenhouse gases from livestock farming include 65% of the total emissions of nitrous oxide, 64% of the ammonia, 37% of the methane⁹⁵ and 9% of the carbon dioxide.

However, proponents of industrial farming are now claiming that extensive livestock keeping is harming the climate and propose a further intensification of industrial livestock production. They claim that intensification and enclosure means emissions can be captured in factory farms and biogas can be used to produce energy. They also propose further increasing output per animal or per kg of feed, and bringing cattle from pastures into feedlots as solution. But is this credible?

Through massive subsidies and favourable regulations, the developing countries have followed the example of the developed world and created their own industrial livestock production. Asia has become a larger producer of milk than Europe. In 2004 Brazil overtook the USA to become the world's largest meat exporter. Feeds derived from grains that could be consumed by people, and that are transported over long distances, have replaced locally available feed, like grass, other roughage and nutrientrich waste from farms and households. From the beginning industrial livestock farming has caused water, soil and air pollution and seriously compromised animal health and animal welfare. These problems remain largely unsolved. Aquaculture will add to the headaches, as it increasingly turns to the same feed resources as livestock.

to make such an estimate, that is why it is not included.

⁹⁴ Greenpeace (2009): *Slaughtering the Amazon*. updated report, July 2009.

http://www.greenpeace.org/raw/content/international/press/reports/ slaughtering-the-amazon.pdf

⁹⁵ Mining of fossil fuel (incl coal) produces a similar amount of methane emissions than livestock. See pie chart on http://icp.giss.nasa.gov/education/methane/intro/cycle.html

6.1 Greenhouse gas emissions from livestock

Methane from enteric fermentation and manure

Methane resulting from enteric fermentation of ruminants is often presented as the main livestock/climate problem, and a range of solutions are being proposed for further investigation. It is suggested that ruminants like cattle, sheep and goats should be vaccinated to produce less methane. Or, that the methanogenic bacteria in their rumen are to be (genetically) modified. This would alter the 80 million year old process in which methane is produced in the rumen by bacteria belonging to the Archaea, one of the scientifically least understood group of bacteria. The leading research into these ideas currently takes places in New Zealand and Australia countries whose interest in increased exports of meat and milk makes it difficult to reduce national emissions.

However, while manure deposited on fields and pastures, or otherwise handled in a dry form, does not produce significant amounts of methane, factory farms that produce manure in liquid form are releasing 18 million tonnes of methane annually.⁹⁶ These emissions amount to only a fraction (3%) of the total methane emissions but - in today's critical situation - even this amount is important. But instead of reducing these emissions are bound to double soon. China where half of the world's pigs are kept, is currently replacing smallholder systems by factory farms Dairy production in China is increasing by around 15% annually.

Industrial livestock is the leading emitter of nitrous oxide

Nitrous oxide is very persistent in the atmosphere where it may last for 150 years, and nitrous oxide is the most potent of the three major greenhouse gases; with almost 300 times the global warming potential of carbon dioxide. Livestock with 65 % of total nitrous oxides is the leading emitter. However, while the nitrogen cycle is out of balance when using feed grains grown with chemical fertilizer (an essential feature of industrial farming), this is not so in extensive livestock keeping.

Nitrogen plays a key role in the functioning of ecosystems and the cycling of carbon and soil minerals. Traditionally nitrogen for crop production has come from

various sources, including nitrogen-fixing bacteria that live in the roots of leguminous plants and manure. Animals are inefficient nitrogen users and excrete high levels of nitrogen, in the form of nitrous oxide.. The nitrogen cycle gets out of balance when feed is grown with chemical fertilizers, as about half of the synthetic nitrogen is not absorbed by plants, while the excessive nitrogen is polluting ecosystems.⁹⁷ As a result of continuing chemical fertilizer additions, the atmospheric nitrous oxide level is increasing.

Most extensive livestock systems are more climate friendly and offer useful synergies. In contrast to the above, when animals are fed with feed grown without chemical fertilizer, and their manure returns to the soils, their nitrogen inefficiency has no negative impact on the environment – the nitrogen cycle is kept in balance.⁹⁸ Moreover, manure benefits soil fertility, its water retention capacity and its organic matter content that is essential to prevent soil degradation.

Extensive livestock keeping maintains a major carbon sink: Grasslands

Moreover, most extensive systems of livestock production help to conserve ecosystems as well as to reduce greenhouse gas emissions. The roots of plants in pampas, prairies and tundra are a major CO₂ sink. Grasslands cover over 45 % of the earth's surface - 1.5 times more than forest. Whilst forests may add only about 10 per cent to their total weight each year, savannas can reproduce 150 per cent of their weight annually, and tropical savannas have a greater potential to store carbon below ground than any other ecosystem.99 Animals and grasslands have evolved together-Ruminants like cattle, goats, sheep, buffaloes and camels turn roughage into food for humans while seasonal grazing clearly contributes to biodiversity. It is a virtuous circle: biodiversity is enriched, a major CO2 sink (grassland) is maintained and a valuable food is created. Traditional pastoralists have, at times, been accused of overgrazing but major environmental organisations, including IUCN,¹⁰⁰ are now challenging this assertion and call for

⁹⁶ Steinfeld et al. (2006), p. 97

⁹⁷ Steinfeld et al. (2006), p. 103

⁹⁸ Steinfeld et al. (2006)

⁹⁹ Davies J. & Nori M. (2008): Managing and mitigating climate change through Pastoralism. Policy Matters, October 2008

¹⁰⁰ IUCN/World Initiative for Sustainable Pastoralism (WISP)(2008): Misconceptions surrounding pastoralism. accessed 20.5.2009; http://www.iucn.org/wisp/whatwisp

better regulatory support for mobile systems of grazing, such as pastoralism and transhumance.

6.2 Industrial aquaculture hastens climate change

Aquaculture is promoted as a climate-efficient user of feed. The feed industry claims that it only takes 2 kg of feed to produce 1 kg of live fish, while poultry requires 3 kg and cattle 8-10 kg. However, the feed resources promoted by industrial aquaculture are unsustainable. In the North, 70% of fish farms require fish meal and fish oil. Depletion of small pelagic fish for fish meal and fish oil has fundamentally disturbed the oceans' food web. Because pelagic fish supplies cannot be increased, fish farms are using more and more grains, turning to the same climate damaging feed as industrial livestock farming. Also in Asia, where 80% of global aquaculture production takes place, industrial feed is increasingly replacing local resources. Industrial fish farming has already probably created worse problems than livestock factory farms.

Take, for instance, salmon fish farms. The newly established and highly intensified industry in Chile has already broken down due to a pest (salmon lice) and a virus disease (Infectious Salmon Anaemia, ISA). Similarly, recurrent disease outbreaks in shrimps have caused economic problems to smallholders in Asia. For example, 80% of shrimp farmers in Thailand are now indebted. The growing numbers of farmers in Vietnam who export Pangasius catfish scarcely manage to cover their costs Moreover, their communities' natural resources, the mangroves, have been destroyed. Thus, "intensive" industrial fish production said to be climate efficient due to a low feed conversion rate, is not only using feed that either heats the climate (as does grain grown with chemical fertilizers) or depletes the marine food web (as does pelagic fish fed to shrimps and salmon), but also is economically unsustainable due to diseases, and is destroying local resources and livelihoods.101

Industrial livestock intensification is not an option

Industrial intensification as a mitigation approach is just a call for more of the same in policy terms. Those who only have a hammer will only look for nails, as Dennis Meadows, an author of the Club of Rome's Limits to Growth¹⁰² put it. The new biotechnologies for "genetic improvement" seek increased uniformity of the animals within even shorter time periods. They are aiming at higher selection intensity (e.g. DNA marker-assisted selection), shorter generation intervals (e.g. selection from embryo, not adult animals), more females than males in cattle and pigs ('sexed semen') and replication of the same animals (clones). The result of such livestock biotechnologies is predictable: increased genetic uniformity, greater dependency on a few genetics corporations, more problems with diseases, more demands for subsidies, more pressure on animal welfare, more environmental pollution and more climate change. In sum, more of the same problems that are already an implicit part of the production system.¹⁰³

Proponents claim that intensification and enclosure means emissions can be captured in factory farms and biogas can be used to produce energy. Indeed, Clean Development Mechanism (CDM) financing is available and has already been used in several dozens of registered projects in Brazil, Mexico, the Philippines and elsewhere. However at least in Mexico, the biodigesters have experienced many technical difficulties that place their future viability and continued development in question.¹⁰⁴ Moreover, they are only merely helping to justify industrial livestock production. More climate damaging feed will be fed, high nitrous oxide emissions will persist, as will all the other unsolved environmental, economic and social problems.

6.3 Pressurising smallholders instead of reducing over-consumption?

Wrongly, pastures or extensive livestock production are discussed as being less climate friendly than intensive industrial production because of their higher emissions

[/]why_a_global_initiative_on_pastoralism_/2313 /Misconceptions-surrounding-pastoralism

¹⁰¹ Gura S. (2009): Supporting Global Expansion of Aquaculture. The new strategy of the European Commission. In World Economy and Development 3/May-Jun 2009

¹⁰² Meadows D.H., Meadows D.I., Randers J. & Behrens III W.W. (1972): *The Limits to Growth*. A Report to The Club of Rome

¹⁰³ Gura, S. (2009): Corporate livestock farming: A threat to global food security. In: Third World Resurgence, April 2009

¹⁰⁴ Lokey E. (2009): *The status and future of methane destruction* projects in Mexico. In: Renewable Energy 34, 566–569

per unit product or also per animal. Henning Steinfeld of FAO argued during UNFCCC climate talks in June 2009 in Bonn that to produce a liter of milk in the US would be more climate friendly than to produce it in India. After all, the increasing world populations would be demanding and entitled to more animal products. However, while an Indian citizen's consumption of animal products is limited to around a liter of milk per day (plus occasional egg or fish), a US citizen consumes a pound of meat (plus egg or fish) in addition to his milk products. Consumption patterns are closely connected to the production system.

Consuming an unlimited amount of meat, milk and eggs should not be a development goal supported by tax breaks, subsidies, externalized cost or favourable regulations, especially in times of changing climate,. Moreover, contrary to a widespread belief, animal products are not essential for a healthy diet and FAO for good reasons does not recommend a minimum intake. Instead consumption is considered far too high in most industrialized countries and is a major cause for 'diseases of civilization'.

Whether red meat, white meat or fish are best for the climate is often discussed but it is not the question that needs to be addressed. The real question is how to minimize their consumption and how to reduce their unsustainable industrial production in which livestock are fed on grain (which could, incidentally, be eaten by people), instead of on roughage or waste. The "productivity" of poultry, pig and cattle has been increased to such an extent and the range of varieties and breeds in commercial use so restricted that their genetics are depleted, their health depends on "biosecurity"¹⁰⁵ and antibiotics, and their overall welfare has been compromised to a level that is unacceptable to most people. True prices of animal products would change unreasonable consumption.

According to the FAO, 70% of the poor keep livestock which are not only a source of food and income, but also a source of textiles, fertilizer, draught power, status, credit and cultural identity. A policy of further industrialization may negatively affect the smallholders in many ways. Examples are the export orientation of Brazilian animal health regulations, or the adverse impact on smallholders of Avian flu regulations, where smallholders' animals remained healthy while carrying disease vectors and were therefore culled in order to protect weak industrial breeds from infections. All these factors have led to pressures on smallholders keeping livestock. Younger people often turn away from livestock keeping because of adverse policies.¹⁰⁶

Conclusion

The excessive number of industrial livestock today are accelerating climate change and contributing to make one billion people obese. Livestock development must be based on its positive interaction with ecosystems, providing services along with produce, not based on the subsidized conviction of ever increasing productivity per unit product or animal. Indeed, faster livestock growth and lower feed conversion ratios have been achieved over the past decades. However, subsidies, tax breaks, cost of epidemic control, and the huge externalized cost of environmental destruction and certain diseases of civilization have led many to the conclusion that there is no such thing as cheap meat. Moreover, local feed and roughage was increasingly replaced by feed grain grown with chemical fertilizer, the source of most anthropogenic nitrous oxide emissions. Climate efficiency claims vanish in view of the amounts necessary to make nine billion people eat as much animal food as they may want.

Contrary to a widespread belief, animal proteins are not an essential part of a healthy diet. Removing most of the animal products from the Northern diet has become an imperative. Policy makers have not yet investigated its viability, but consumers have started its implementation. When seen from the climate perspective, food from industrial livestock has low quality and status, inferior to plant foods.

Grasslands are a major carbon sink and have evolved to co-exist with livestock. It would be a climate policy mistake to allow destroying grasslands for more crop land for more feed for ever more livestock. Far fetched proposals like changing the bacteria that help to turn grass into food within the ruminants' stomachs aim at reducing methane emissions, but will not reduce the number of cattle, the excessive Northern consumption

^{105 &}quot;Biosecurity" is a term coined by the livestock industry for(structural or organisational) provisions to keep disease out of factory farms. Biosecurity generates an increasing part of the production cost.

¹⁰⁶ Susanne Gura (2008): Industrial livestock production and its impact on smallholders in developing countries. Report to the League for Pastoral Peoples and Endogenous Livestock Development, www.pastoralpeoples.org

and the destruction of grassland as well as other carbon sinks. Climate damaging feed would be fed, far too high nitrous oxide emissions would persist (even if "nitrification inhibitors" would remove some), as would all the other unsolved environmental, economic and social problems of industrial livestock. Its intensification is not an option.

7. What are the climate implications of grabbing 'marginal land'?

Much of the debate about climate change mitigation and adaptation is premised on gaining access to land. Land is claimed for agrofuel and food production by corporations and foreign governments, for speculation by funds seeking to attract investors into agriculture¹⁰⁷ – and also in the name of protecting biodiversity from all these pressures. In some cases governments are zoning national land for conservation or exploitation and possibly looking to trade one against the other. In the last few months news stories about the grabbing of land worldwide have been increasing rapidly and can be followed at a number of sites.¹⁰⁸ They range from deals by oil-producing nations plus China, India, Korea, Vietnam and others for food production to investment funds such as Emergent Asset Management seeking big returns on acquisitions of land in Africa at minimal prices. At the same time, deals involving millions of hectares of land for the production of agrofuels are also under discussion. Potential deals include 2.8 million ha in the Democratic Republic of Congo (DRC) for oil palm agrofuel and 2 million ha for jatropha agrofuel in Zambia, both for China.¹⁰⁹ Countries targeted include Ethiopia and Tanzania as well as the conflict torn Sudan and DRC. When the talk turns to amounts of land required to produce biochar areas between half and two billion hectares have been mentioned.110,111

107 See for example the investment management firm Emergent and their Emergent Africa Land Fund; http://www.eaml.net/templates/Emergent/home.asp? PageId=7&LanguageId=0

109 von Braun J. & Meinzen-Dick R. (2009): "Land Grabbing" by foreign investors in developing countries: Risks and opportunities. IFPRI Policy Brief 13; http://www.ifpri.org/pubs/bp/bp013Table01.pdf; and http://www.ifpri.org/pubs/bp/bp013.pdf So it is hardly surprising that we are constantly told that there are vast extents of marginal, degraded, under-used, abandoned, sleeping and waste land, that will not compete with food production and are just waiting to be brought into production for agrofuels and biochar as coproducts. Additionally, we are also told that this land can potentially be restored by planting so-called advanced agrofuel and/or biochar crops, creating a "win-win" situation.¹¹²

However, much of this land is actually collective land long used by local people¹¹³ to whom it may be a vital resource for water, food in times of drought, medicine and materials, especially to the most marginalised people.¹¹⁴ Frequently these people have no formal title of ownership to the land but are exercising their longexercised customary rights. Jonathan Davies, global coordinator of the World Initiative for Sustainable Pastoralism, Nairobi, Kenya, comments:

"These marginal lands do not exist on the scale people think. In Africa, most of the lands in question are actively managed by pastoralists, hunter-gatherers and sometimes dryland farmers [...] There may be wastelands lying around to be put under the plough, but I doubt that they are very extensive."^{115,116}

- 111 Chung E. (2009): Ancient fertilizer technique could help poor farmers, store carbon. CBC News, 23.3.2009; http://www.cbc.ca/technology/story/2009/04/23/tech-090423biochar-carbon-trading.html
- 112 Gallagher E. (2008): The Gallagher Review of the indirect effects of biofuels production. Renewable Fuels Agency; http://www.renewablefuelsagency.org/reportsandpublications/revie woftheindirecteffectsofbiofuels.cfm
- 113 Mausam, July-September 2008; http://www.thecornerhouse.org.uk/pdf/document/Mausam_July-Sept2008.pdf
- 114 Nyari B. (2008): Biofuel land grabbing in Northern Ghana. http://www.biofuelwatch.org.uk/files/biofuels_ghana.pdf
- 115 The Gaia Foundation, Biofuelwatch, the African Biodiversity Network, Salva La Selva, Watch Indonesia & EcoNexus (2008): Agrofuels and the Myth of the Marginal Lands. Briefing paper; http://www.econexus.info/pdf/Agrofuels_&_Marginal-Land-Myth.pdf;
- 116 Donizeth D.J. (2008): India's Policy on Jatropha-based Biofuels: Between Hopes and Disillusionment. Focus on the Global South, 22.9.2008; http://focusweb.org/india/index.php? option=com_content&task=view&id=1069&Itemid=26 Navdanya (2007): *Biofuel hoax: Jatropha and land grab.* Press release, 5.12.2007; http://www.navdanya.org/news/5dec07.htm

¹⁰⁸ For uptodate information see GRAIN's website *Food crisis and the global land grab.* http://farmlandgrab.org

¹¹⁰ Read D. (2006): Treasury review of the economics of climate change. Submission from Dr Peter Read. Stern review evidence, 12.3.2006; http://www.hm-treasury.gov.uk/d/massy_uni_2.pdf

29

'Marginal land' is not usually rich and fertile, but more often nutrient poor with harsh environmental conditions. Though many rely on it for their survival, it requires detailed knowledge and experience to do so.

What are the impacts of turning "marginal" land over to monocultures?

There are a wide variety of impacts on people, ecosystems and biodiversity, and the relationship between them. The people who inhabit such areas are often themselves marginal, largely invisible to policy-makers and international institutions. Among those likely to suffer most from expropriation of such lands are **women**, who often have no property rights or access to land. As a FAO report of 2008 states: "The conversion of these lands to plantations for agrofuels production might therefore cause the partial or total displacement of women's agricultural activities towards increasingly marginal lands."¹¹⁷

Another group that would suffer are **pastoralists**. Both they and their way of life are widely misunderstood, increasingly marginalised and hemmed in by settlements, international borders and parks, yet they should be actively be involved in discussions about adaptation to climate change:

"Mobile pastoralists are amongst those most at risk to climate change, yet they are amongst those with the greatest potential to adapt to climate change, and they may also offer one of the greatest hopes for mitigating climate change."¹¹⁸

However there is ongoing pressure to convert their land to more 'productive' uses, such as crop cultivation, without paying attention to the potential climate impacts of so doing. One study "provides evidence of the complex connection between regional changes in climate and changes in land cover and land use. New study results are warning that the conversion of huge areas of pasture lands to croplands in east Africa will be a major contributor to global warming in the region."¹¹⁹ Like pastoralists, **indigenous peoples** and **small-scale farmers** are extremely vulnerable to climate change with its associated extremes of droughts, floods and storms, as well as shifts in local climate and vegetation. Like pastoralists, they are also in danger of being expropriated, with the additional excuse that this would be done to protect the climate. However, policy-makers are inclined to forget that the relationship between people and marginal land may be subtle and complex and the insights of the people may be crucial for protecting biodiversity and the integrity of ecosystems, which are vital buffers against the impacts of climate change.

The recognition of their land rights is a fundamental need for marginalised peoples and small-holder farmers. However, Olivier De Schutter, the Special Rapporteur on the Right to Food, noted in his report to the UN General Assembly that "no governmental delegation present at the High-Level Conference on World Food Security (held in June 2008 as the food crisis increased) mentioned agrarian reform or the need to protect the security of land tenure."¹²⁰

Marginal lands: biodiversity resources for adaptation

Marginal land with poor soils can be home to a highly biodiverse population of plants and animals in dynamic interaction. Although little studied, such marginal areas may prove to be extremely important in providing insights into adapting to climate change. The plants must continuously adapt to harsh, often rapidly changing conditions, so such land could be a vital source of genetic diversity for resistance to stresses such as drought, disease and pests in the future, especially as climate change threatens the viability even of locally adapted farmer varieties of crops.¹²¹

In Europe and the US, land designated as set-aside or belonging to the Conservation Reserve Program (CRP) may also be a crucial refuge for biodiversity. However, it is often considered marginal and may readily be

¹¹⁷ Rossi A. & Lambrou Y. (2008): Gender and equity issues in liquid agrofuels production - Minimising the risks to maximise the opportunities. FAO; www.fao.org/docrep/010/ai503e/ai503e00.HTM

¹¹⁸ Davies J. & Nori M. (2008): Managing and mitigating climate change through pastoralism. Policy Matters 16: 127-141. http://cmsdata.iucn.org/downloads/pm16_section_3.pdf

¹¹⁹ Maitima J.M. (2008): *Climate Land Interaction Project*. International Livestock Research Institute (ILRI);

http://www.ilri.org/ILRIPubAware/ShowDetail.asp? CategoryID=TS&ProductReferenceNo=TS_080722_001

¹²⁰ De Schutter O. (2008): Report of the Special Rapporteur on the right to food, Olivier De Schutter: Building resilience: a human rights framework for world food and nutrition security. UNHCR, A/HRC/9/23, 8 September 2008.

¹²¹ Melaku Worede, Ethiopian geneticist, one of the founders of Seeds of Survival and a specialist in uncultivated biodiversity, pers communication.

sacrificed to boost production of food crops or agrofuels. This has already occurred both in the EU¹²² and the US, prompting immediate fears over the fate of wildlife. In the US, there are proposals from researchers to turn vast regions of marginal, unused and fallow land over to genetically modified poplar trees with altered or reduced lignin for the production of second generation fuels¹²³ supposedly to address climate change. Such contradictions are embedded in the proposition that biomass production should be scaled up, particularly on so-called marginal lands, and need to be urgently addressed.

Conclusions

Land that is classified as marginal often has great value to people, biodiversity and ecosystems and for stabilising climate and rainfall. Turning it over to industrial cropping for food, fuel or biochar may increase regional and global climate change. Instead of relying on false solutions such as biochar and agrofuels we should put the knowledge of small-scale farmers, pastoralists and indigenous people at the centre of the debate about marginal land and how to restore the integrity of ecosystems, especially in dry regions.

http://uk.reuters.com/article/latestCrisis/idUKL1633601820070716

http://www.monsanto.co.uk/news/ukshowlib.phtml?uid=10618

8. Can genetic engineering and the new "bioeconomy" provide solutions to climate change?

We are used to seeing genetically modified (GM) crops as an issue of biosafety and biodiversity protection, discussed under the Convention on Biodiversity and its Cartagena Protocol on Biosafety. However, genetic engineering is also being promised as a solution to some of the issues of climate change adaptation and mitigation. Furthermore, technologies related to it, such as genome sequencing and synthetic biology, go beyond what we have hitherto understood as genetic engineering. In addition, synthetic biology, also named by ETC Group as extreme genetic engineering, and promoted as a means to build novel organisms by re-assembling genetic material, is being promoted as a way to produce next generation agrofuels. More than this, it is designed to assist in the development of a new bio-economy, based on the substitution of fossil oil with non-fossil biological material.

The basic message as currently repeated by biotechnology and agrochemical companies goes something like this:

Population is predicted to rise by 50% to some 9 billion by 2050, so we must increase food production by 50-100% in order to meet new aspirations for meat consumption. In addition, we face climate change and peak oil so we need to produce an increasing proportion of energy and fuels, including first and second generation agrofuels, from biomass. However, there are insufficient natural resources including land and water for this expansion, so we must produce more from each hectare. For this we need crops with increased yields. At the same time, we must also respond to climate change so we need plants that can flourish in conditions of greater extremes of weather, heat, flood and drought. Because much land is saline, due to irrigation and flooding, we also need salt tolerant crops. Since synthetic nitrogen fertilizer in particular is energy intensive to produce and since not all of it is taken up by the crop plants resulting in N₂O greenhouse gas emissions and nitrate leaching, biotech research also needs to develop crops that are capable of fixing their own nitrogen.

In the area of energy production, we need to move away from fossil oil and must find an alternative source for all

¹²² Smith J. (2007): EU moves to scrap set-aside to boost grain supply. Reuters, 16.7.2009;

¹²³ Purdue University (2006): Fast-growing trees could take root as future energy source.

the products it yields, from fuels to plastics. Trees and other plants can play a major role in these developments, especially if modified in different ways through genetic engineering and this can form a major part of a new economy, the bioeconomy. In addition a considerable amount of energy is required to break down the biomass from trees and other plants, including algae into the sugars and oils required for agrofuels and other industrial products. So biotechnology proponents promise GM plants that will break down more easily, and genetically engineered enzymes and micro-organisms that will reduce the need for energy use, and therefore emissions, in industrial processing. In sum, the biotech companies promise to feed the expanding human population, to replace fossil fuels and to tackle climate change through genetic engineering.¹²⁴ And if that should fail, they promise synthetic biology to custom-build microorganisms to do it all.

The Biotechnology Industry Organisation (BIO) obviously sees the climate negotiations as an important platform and has laid out for its members the opportunities and risks involved.¹²⁵ It asserts that: "Biotechnology provides key solutions to mitigating climate change. This is our opportunity to make those solutions more widely known, while protecting the ability of innovators to maintain intellectual property rights!" BIO has also written to Hilary Clinton emphasizing the importance of intellectual property and expressing concern lest intellectual property protection be watered down in developing countries in the name of tackling climate change.¹²⁶

http://www.monsanto.com/responsibility/sustainableag/default.asp; Syngenta (2009): Syngenta calls for greater international collaboration to address food security challenge. press release

21.4.2009,http://www.syngenta.com/en/media/mediareleases/en_09 0421.html; DuPont (2009): Welcome to DuPont biotechnology. website, accessed 17.5.2009,

http://www2.dupont.com/Biotechnology/en_US/; Bayer (2009): Bayer CropScience calls for a "Second Green Revolution", press release, 17.4.2009;

http://www.bayercropscience.com/BCSWeb/CropProtection.nsf/id/ EN_20090417_1?open&l=EN&ccm=500020

- 125 BIO (2009): BIO Climate Change Convention Action Plan. 6.8.2009. http://www.nzbio.org.nz/page/industry-reports.aspx and http://www.nzbio.org.nz/portals/3/files/BIO%20updated%20action %20plan-UNFCCC.pdf
- 126 BIO (2009): Letter to US Secretary of State H. Clinton. 1.6.2009. http://bio.org/ip/international/documents/BIOLetterReUNFCCC6_

In the following chapter we will briefly explore these promises and also look more closely at the concept of the 'bioeconomy'. The claim that herbicide tolerant GM crops in non-till agriculture are already a method to fight climate change is discussed in chapter 4).

8.1 'Climate-ready' crops and crops with higher yields

Increased yields

In response to the argument touched on above that there is insufficient land to feed a growing population with higher expectations, ever more intensive forms of agriculture are proposed while extensive or agroecological agriculture is often dismissed as having high emissions.

At the same time there is competition for agricultural land for the production of animal feed (which already uses one third of cultivated land) and agrofuels. Under the scenarios projected by agribusiness, the demand for both is set to rise much further. This in turn will require new (agricultural) land on a large scale which is not available without extending agricultural production into so-called 'marginal land' (see chapter 8) or by intensifying food/feed production so that it can take place on fewer hectares.

Over the last 10 to 15 years, many attempts and trials have been undertaken to develop GM crops for higher yield. No such crop has so far been proposed for commercial use, and little scientific information is available on how such yield increases could be achieved.¹²⁷

Nevertheless, the biotech industry regularly claims that currently available genetically modified (GM) crops already show increased yield, even though their GM traits are herbicide tolerance and insecticide (Bt) production in soya, maize (corn) and cotton. However, careful examination shows that this is not the case. For some GM crops, such as herbicide tolerant soya,¹²⁸ even *lower* yields compared to conventional varieties have been observed.¹²⁹ It is also important to distinguish between

¹²⁴ For example: Monsanto (2009): Sustainable Agriculture. website, accessed 17.5.2009,

^{2009.}pdf

¹²⁷ Steinbrecher R.A. & Lorch A. (2008): *Feed the World?* The Ecologist, Nov. 2008: 18-20.

¹²⁸ RoundupReady (RR) soya, tolerant against glyphosate

¹²⁹ Steinbrecher R.A. & Lorch A. (2008): *Feed the World?* The Ecologist, Nov. 2008: 18-20.

actual

(*intrinsic*) yield increase due to greater productivity from the plant and operational yield increase, brought about by a reduction of loss from pests and diseases or improved farming practices. The Union of Concerned Scientists notes in its recent report Failure to Yield¹³⁰ that "no currently available transgenic varieties enhance the intrinsic yield of any crops" and attributes rises in intrinsic yield to conventional breeding. On the other hand operational reduction of yields has been observed in cases when the GM trait ceased to work

effectively, especially with the development of herbicideresistant weeds (for the example of herbicide tolerant cotton and soya, see boxes 4.1 and 4.2).

Abiotic stress tolerance

Most crops are restricted by temperature, water availability, day length, and seasons etc. as to where they can grow. Genetic engineering has already been promised as an option for modifying plants so that they can grow under less favourable conditions in order to be able to extend acreage or to grow them on depleted/marginal soils. Even though these promises have failed to materialize so far, they are now repeated in the context of climate change for food/feed crops and for plants for other purposes.

Abiotic stress tolerance: For many years the biotech industry has promised salt, heat, flood and drought tolerant crops to deal with soil and water degradation due to land-use change, over-exploitation and industrial monocultures. Climate change has intensified the focus on abiotic stress tolerance in crops, but this does not mean that stress tolerant GM crops are the solution. Abiotic stress tolerance can also be developed through conventional breeding and already exists in some locally adapted crop varieties.¹³¹

The current generations of herbicide tolerant and insecticide expressing (Bt) crops are simply modified to produce an additional protein, and even that cannot be done precisely, with unexpected effects. Projected new GM traits like stress tolerance involve complex interactions among many genes and molecular signal pathways. Indeed, the simple equivalence between a gene

and a trait is the exception rather than the rule, and the interactions between (groups of) genes, proteins and chemical compounds involved in conferring abiotic stress tolerance are neither fully understood nor predictable. Even when single genes are identified that are correlated with stress tolerances, this is still a long way from actually being able to develop and test a GM plant.

According to Osama El-Tayeb, Professor Emeritus of Industrial Biotechnology at Cairo University

"transgenicity for drought tolerance and other environmental stresses (or, for that matter, biological nitrogen fixation) are too complex to be attainable in the foreseeable future, taking into consideration our extremely limited knowledge of biological systems and how genetic/metabolic functions operate."132

Altered temperature/geographic range is meant to enable plants to grow outside their usual climatic conditions and regions; for example cold-tolerant eucalyptus trees. The dangers of such an approach have not yet been assessed but since eucalyptus is an invasive species, there is a risk of extending its capacity to invade and disrupt ecosystems by displacing native species and because it is highly flammable and thus increases wildfire risks. GM trees and other plants growing in a new environment are likely to interact unpredictably with other organisms, including pests.

Converting C3 plants into C4 plants: Summarized very briefly, C4 plants such as maize, sugarcane and millet are considered to photosynthesise, tolerate heat and use water more efficiently than C3 plants (e.g. potato, rice, wheat and barley), and therefore might be adapted better to climate change conditions. Yet conversion from C3 to C4 would involve modifying the complex photosynthetic system of the plant, which again is not yet fully understood.

Nitrogen and other fertilizers

Plants need nitrogen to grow but in general are quite inefficient in taking it up through their roots. At the same time soils under constant cultivation become depleted of nitrogen. This is even the case with plants known for their ability to fix nitrogen in the soil (like soya and other leguminous plants) if these plants are cultivated

¹³⁰ Gurian-Sherman D. (2009): Failure to Yield: Evaluating the Performance of Genetically Engineered Crops. Union of Concerned Scientists;http://www.ucsusa.org/food_and_agriculture/science_and _impacts/science/failure-to-yield.html

¹³¹ Practical Action (2009): Biodiverse agriculture for a changing climate. http://practicalaction.org/?id=biodiverse_agriculture_paper

¹³² El-Tayeb O. (2007): Alternatives to genetic modification in solving water scarcity; email comment 28.3.2007 Electronic Forum on Biotechnology in Food and Agriculture; http://www.fao.org/biotech/logs/C14/280307.htm

intensively and without appropriate crop rotation. On the other hand the production and application of nitrogen and other fertilizers has been identified by the Intergovernmental Panel on Climate Change (IPCC) as the main cause of anthropogenic nitrous oxide emissions.¹³³ (see chapter 4). This is because the manufacture of nitrogen fertilizer is energy intensive and nitrous oxide emissions from the soil due to the failure of plants to absorb applied nitrogen are also high.

Enhanced uptake and utilization of nitrogen is meant to enable plants to make full use of all the nitrogen present in the soil, no matter whether these are nutrient poor or strongly fertilized soils. While such plants were already projected in the late 1980s, none of them have been developed. Attempts to genetically modify rice and other crops for high nutrient use are still in early stages, as currently there is poor understanding of how the genes involved are regulated.

Promises for future GM crops include **nitrogen-fixing for non-leguminous plants** to reduce dependence on chemical nitrogen fertilizers. As El-Tayeb pointed out above, this trait too depends on complex interaction of several genes, and any attempts have failed so far.

Assessing the promises

Patents, confidentiality and funding for climate-ready crops: A major problem with research into new GM crop developments is that "besides general statements and website announcements, there is no information available about the scientific basis of this work."134 Indeed Confidential Business Information (CBI) claims applied to GM techniques as well as to genes and DNA sequences reduces public access to information about novel crops and their claimed impact on climate issues. Pending patent applications have the same effect, while granted patents and other intellectual property devices limit access by scientific researchers to both information and genetic material. Yet we have seen from the preoccupations of BIO how important patents are to corporate interests. ETC group describes how the five major biotech corporations between them have filed more

 $nggip.iges.or.jp/public/gp/bgp/4_5_N2O_Agricultural_Soils.pdf$

than 500 patents "on so-called 'climate-ready' genes at patent offices around the world."¹³⁵ In addition, agricultural research and development is increasingly carried out by the private sector, which obviously has a vested interest in monopolizing rather than sharing any inventions or discoveries they may make. All this makes it more difficult and costly to access information and material for research. Absence of information about new developments makes it hard to assess them. In a world faced with climate change, information needs to be freely and fairly shared.

In a current example - the application to release at least 150,000 GM eucalyptus trees by the company Arborgen in the US with different traits including an extended geographic range - basic information about which traits, genes or GM events were involved were not even disclosed to the public and independent scientists, making any meaningful risk assessment impossible. At the same time such levels of secrecy mean that policy makers have only the statements of the producing companies on which to base their decisions about the potential of such approaches for climate change mitigation and adaptation.

So, while there are numerous suggestions for future GM crops to address climate change, none of them seem to be feasible at the moment. Were they to be developed, the thorough risk assessments required before the introduction of fundamentally new GM crops, means that any practical application is a long way off. Concentrating on such GM crops therefore carries high opportunity costs, losing time and money that could be invested in other, more promising, less risky approaches.

Such GM crops, if developed, would also be likely to be associated with the model of industrialized, monoculture agriculture, which is where they have been most successful to date, yet this is the most fossil fuel and emission intensive type of agriculture with obvious negative effects on climate change.

¹³³ Smith K, Bouwman L. & Braatz B. (2003): N2O: Direct emissions from agricultural soils. In: IPCC (eds): Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. http://www.ipcc-

¹³⁴ Steinbrecher R.A. & Lorch A. (2008): *Feed the World?* The Ecologist, Nov. 2008: 18-20.

¹³⁵ etc group (2008): Patenting the "Climate Genes"... And Capturing the Climate Agenda. Communiqué May/June 2008. http://www.etcgroup.org/en/materials/publications.html? pub_id=687

8.2 Biomass production to replace fossil fuels

GM crops for better biomass production and utilisation

Genetic engineering is also experimentally applied to the conversion of biomass (including whole crop plants and residues) into agrofuels and other alternatives to fossil fuels. These are also called second generation, next generation and advanced agrofuels. The aim is to use less energy in the process and reduce emissions of greenhouse gases. This is also the area for which synthetic biology is promoted. Experimental applications include:

- changing the ratio of lignin to cellulose in the biomass so that it can be more easily broken down and converted into products such as agrofuels or bioplastics. In general woody plant material is difficult to process due to its high lignin levels, and research is underway for example with poplars to reduce lignin levels in favour of cellulose levels. The risks of GM trees for global forest ecosystems is regarded as potentially very high, for example, pests are likely attack trees with reduced lignin;¹³⁶
- GM algae to produce agrofuels, since existing algae do not offer consistent commercial yields;
- GM enzymes and/or microbes for insertion into crops or for use in processing plants to promote breakdown of biomass; and
- artificial (synthetic) micro-organisms for multiple purposes.

All this work is based on the premise that fossil fuels can be replaced by agrofuels, to enable the continuation of the current paradigm of industrial development based on intensive energy use while addressing climate change. Genetic engineering biotechnology is therefore being applied so as to underpin this proposition. However, responding to climate change may require a far more radical change to industrialized ways of life, and we need to be turning our ingenuity to these, rather than perpetuating a model which may have reached its limits.

Bioeconomy

The bioeconomy is a multifaceted concept primarily based on the idea of replacing finite and fossil oil reserves with potentially infinitely renewable sources of biological material. In the case of plants and trees, we are told, there is the added advantage that this raw material also sequestrates carbon as it grows. Faced with decreasing discoveries of new fossil oil reserves coupled with growing demand, rising prices and rising emissions, a wide range of corporations has begun to project a future of unlimited growth based on the new bioeconomy.

The large scale production of biomass therefore is a prerequisite of a successful *bioeconomy* - a term coined to describe attempts to understand plant processes at the genetic and molecular levels and to apply them in industrial processing. The bioeconomy also projects itself as building systems in which the waste material of one process can be used to fuel others in a way that more closely replicates how healthy ecosystems function.

The OECD, EU and US currently invest considerable intellectual and financial resources into various bioeconomy projects. EuropaBio, the European biotechnology industry association, describes *biorefineries* as the central concept of the bioeconomy:

"A biorefinery transforms biomass derived from renewable raw materials into a wide range of commodities by the means of advanced biotechnological processes such as enzymatic hydrolysis. The biomass comes from a variety of sources such as trees, energy crops such as switchgrass and agricultural products such as grain, maize and waste products such as municipal waste. Biorefineries can produce commodities such as bioethanol, bioplastics, biochemicals and ingredients for the food and feed industry."¹³⁷

The biorefinery concept symbolises the manner in which the pursuit of the bioeconomy brings together the interests and experience of the major agricultural and chemical industries (e.g. seed, fertilizer, pesticide, commodities and biotechnology) with the energy sector, including the oil, power and automotive industries. Other

¹³⁶ Steinbrecher R.A. & Lorch A. (2008): Genetically engineered trees & risk assessment. An overview of risk assessment and risk management issues. Vereinigung Deutscher Wissenschaftler, Berlin, Germany. http://www.econexus.info/pdf/GE-Tree_FGS_2008.pdf

¹³⁷ EuropaBio (2009): Today's applications. Biorefinery. website, accessed 17.5.2009. http://www.bio-economy.net /applications/applications_biorefinery.html and EuropaBio (2007): Biofuels in Europe. EuropaBio position and specific recommendations. June 2007. http://www.europabio.org/positions/Biofuels_EuropaBio %20position_Final.pdf

industries already based on biomass production, such as the timber and paper industries also see the possibility of using their waste materials profitably as raw materials for energy production or for reducing their own emissions.

The development of the bioeconomy therefore implies that huge areas of the planet will be turned over to monocultures of crops and tree plantations for processing in biorefineries. This prioritizes the use of biomass for economic purposes over ecological purposes such as protecting biodiversity and water sources, regenerating soils with humus, retaining moisture in soils or protecting the integrity of ecosystems. Furthermore, demand is potentially limitless, as massive increases in energy consumption are predicted if we continue the current paradigm on which the bioeconomy is predicated. This is compounded by the fact that plant biomass has low energy density in comparison with the fossil fuels it is meant to replace.

The development of the bioeconomy would further extend all the well-documented impacts of industrial agriculture on soils, water, biodiversity, ecosystem integrity, small-scale farmers, local communities and indigenous peoples. It could signal the end of major tracts of forest and other vital ecosystems. It would certainly mean the development of still more monoculture tree plantations, likely to be genetically modified to suit the needs of industrial processing and harvested by large energy intensive machines. The demands on water supplies of such developments would be massive. Even less discussed are the challenges of moving all this biomass from where it is produced to the biorefinery, demanding road infrastructure and fleets of trucks. The proponents of biochar, which is just one small part of the proposed bioeconomy, propose that biomass can be locally processed into basic fuels and charcoal, the latter to be added to the soil. The inescapable image is of a completely cleared landscape whose forest is now underground supposedly sequestrating carbon for hundreds of years. The irony is that this would all take place in the name of tackling climate change.

Conclusions

Some of the risks of climate-ready crops, GM plants and GM enzymes for biorefineries can already be anticipated, but many will be completely new and potentially far greater because more complex genetic engineering events will inevitably carry more complex and unpredictable risks. Already, studies show that even comparatively simple forms of genetic engineering throw up completely unexpected effects.¹³⁸ Currently risk assessment relies on assumptions of equivalence and familiarity but such a basis will not be available for microorganisms, algae, crops and trees with fundamentally different traits, different cell regulation and/or different synthetic pathways.

Regardless of whether such complex GM crops can ever be developed, they are not ready now and may not be for many years, if at all. But we need action *now* to counter climate change and to stop the destruction of biodiverse ecosystems that help to regulate climate.

There are other ways to address the problems for which GM crops are proposed as solutions, but they are in the public domain where information and experience is shared, not sold. Publicly funded research in agriculture has been dwindling rapidly over the last decades.¹³⁹ Naturally enough, considering how they are currently structured, the large corporations and venture companies that increasingly dominate agricultural research seek short-term returns for their shareholders, which is, after all, their major obligation. Hence there is a lack of research and development into forms of agriculture that can protect and rebuild resources for the future in the common interest.

¹³⁸ Wilson A.K., Latham J.R. & Steinbrecher R.A. (2006): Transformation-induced Mutations in Transgenic Plants: Analysis and Biosafety Implications. Biotechnology and Genetic Engineering Reviews, 23: 209-237

¹³⁹ Paul H. & Steinbrecher R. (2003): Hungry Corporations. ZED Books; http://www.econexus.info/Hungry_Corporations.html

9. Towards an Alternative Vision

We risk paradigm maintenance. Current proposals for response to climate change seek to maintain current power structures and basically amount to business as usual. This must change.

The destruction of ecosystems continues, reducing their resilience to the stresses of climate change and converting them instead to emitters of greenhouse gases. The failure to recognise land rights and institute agrarian reform is breaking the relationship between local communities and their land, and leading to the further loss of cultural knowledge of critical value to us all.

The solutions currently proposed offer only a reductionist approach to the complexities of climate change, converting every issue to greenhouse gas measurements. Most governments and institutions choose to rely on markets to guide action and propose that agriculture should be included in carbon trading. However, government attempts to shift responsibility to the market compounded by market failures are likely to result in subprime carbon, so destroying their own flawed attempts to engineer a solution.

Carbon markets also allow Annex1 countries to evade their own obligations to reduce their emissions and their consumption of energy. This failure to assume responsibility damages prospects for cooperation and encourages cynicism. All this is likely to result in a collective failure to address climate change positively and to use it as a stimulus for real change.

Market mechanisms mask a lack of genuine collective commitment to change, particularly in Annex I countries. The Clean Development Mechanism (CDM) and offsets must not be further extended to agriculture.¹⁴⁰ Any proposal to extend REDD or REDD-plus mechanisms to agriculture is premature and amounts to a policy failure. Similarly, payments for environmental services in agriculture must not be allowed to become a means for donors, both public and private, to avoid real action. Furthermore, to include soils in carbon trading would tend to stimulate the search for techno-fixes such as biochar or no-till agriculture, rather than promoting any real attempt to make the long term commitment to soil research and restoration that is so urgently needed. To reduce the need for effective collective action to a

140 CDM is already applied to pig and poultry factory farms.

botched market mechanism would be a sad failure of imagination and a serious aberration, setting short-term economics above the realities and constraints of the planetary system on which we depend. We cannot rely on market mechanisms to address climate change: carbon trading is a dangerous distraction from what we should really be doing and should be suspended.

To sum up:

- We need far deeper understanding of ecosystem functions and their multiple and interactive benefits. For this we need to recognise the multifunctional nature of agriculture.
- We should cease to undermine and instead support small-scale farming within an ecosystem approach.
- We need to place small farmers, indigenous peoples and local communities at the heart of policy-making.
- We need local production for local markets, and a far broader and richer concept of productivity.
- We need agrarian reform, security of land tenure and recognition of farmers' and breeders' collective/common rights to seeds, breeds, land, water and soil.
- We need freedom to share information and build insights, without being blocked by patent barriers and confidential business information claims.
- We need funding for farmer-centred research rather than just for the priorities of agribusiness.

For all these we need coherent government policies, not market mechanisms. There are many policy changes that could have an immediate positive impact. Above all we need government commitments and policies to support land reform, agroecological approaches and small-scale agriculture.

Agriculture and climate change: Real problems, false solutions

September 2009 www.econexus.info

