EcoNexus

info@econexus.info www.econexus.info

November 2023

Gene Drive Development: Current and proposed non-insect targets, including vertebrates, snails, fungi and plants.

A horizon scanning survey

Mark Wells, PhD and Ricarda A. Steinbrecher, PhD m.wells@econexus.info & r.steinbrecher@econexus.info

Summary of findings:

Screening and analysis of the scientific literature for gene drive development in non-insect targets up to 31 December 2022,¹ showed:

- There are 43 current or proposed non-insect targets².
- Proposals span a wide range of species and taxonomic groups: from mammals and fish to snails, arachnids, fungi and plants (see Table 1).
- In the vast majority of cases the aim is to suppress or eradicate the target.
- Compared to gene drive systems in insects, the systems in other taxonomic groups are further away from releases into the environment.
- A significant amount of research has focussed on developing gene drives in mice, so far with limited success, though efforts are ongoing.
- Development of gene drives in mice is seen by many as a pathway to applying the technology in other mammals.
- There appear to be significant obstacles in applying homing CRISPR gene drive technology in new species and taxonomic groups.

Context

In 2016, the National Academy of Sciences Engineering and Medicine (NASEM) published their report 'Gene Drives on the Horizon'. This was two years after Esvelt and colleagues first published their conceptual paper on utilising the then new CRISPR/Cas system to build a functional gene drive for the modification or eradication of wild populations. At the same time both publications highlighted the dangers and risks of this approach.

Within a year the first proof of concept was published, at that time in the fruit fly *Drosophila melanogaster*, a major model organism for insects (Gantz & Bier 2015). Other proofs of concept followed.

Where is research and development of gene drives now? What is on the horizon? What are the trends? Where has research advanced and where has it hit obstacles? Which species are being focused on and why? And which gene drive systems are being proposed and for which purposes?

To answer these questions, we have undertaken a survey of the scientific literature up until 31 December 2022. Whilst there was a slow steady stream of publications related to "gene drives" in the 10 years up to 2015, a steep rise occurred in 2016 and 2017 (see Figure 1). This started to plateau by 2018, with an average of 135 publications per year since, covering a wide range of disciplines, also including ethics, social sciences, and regulatory issues.

1 This is an updated version of this survey. The original covered literature up to 31 October 2022.

² The vast majority of the targets identified in the literature are single species, however some early stage proposals relate to broader taxonomic groups, the *Cervid* family (entry 11), the *Tetranycahidae* (19), snail genera hosting schistosome parasites (21.1 -21.3), the *Schistosoma* genus (23) and the *Myrtaceae* family (31).

This survey focuses on non-insect targets only. A separate horizon scanning survey for insect targets was published in July 2022 (Wells & Steinbrecher 2022)⁵.

This survey does not cover issues regarding risks, difficulties in performing robust risk assessments, or the lack of proven methods to confine, halt or reverse engineered gene drives.

This survey gives an overview of:

- What research has taken place or is ongoing.
- Which species and taxa are current or proposed targets for gene drive development, and which types of gene drives are being put forward.
- How far developments have progressed and what the next stages of experimentation might be.

KINGDOM	PHYLUM or SUB-PHYLUM	CLASS or SUPERCLASS or INFRAPHYLUM	ORDER			Entry number(s)
Animals Vertebrates	Mammals	<i>Rodentia</i> (Rod	lents)	House mice		1.1.1 - 1.9
			,	Other rodents		2.1 - 6.2
			<i>Carnivora</i> (cats, dogs a	and related mammals)		7.1 - 9
				s and related marsupials)	17	10
			Artiodactyla (Deer and		k	11
			Lagomorpha (Rabbits a			12.1-12.4
		Birds	0 1 (×	13
		Amphibians			-	14.1-15
		Bony fish				16-17
		Jawless fish				18.1-18.2
	Arthropods	Arachnids			☀	19-20
		Insects			*	See separate table ⁵
	Molluscs					21.1-21.3
	Nematodes				- Fr	
	Flatworms				r	23
Fungi						24-27
Plants					*	28-31
					Y	

Table 1: Overview of current gene drive targets.

Overview of gene drive survey data in taxonomic order. Entry numbers correspond to rows in the main data table.

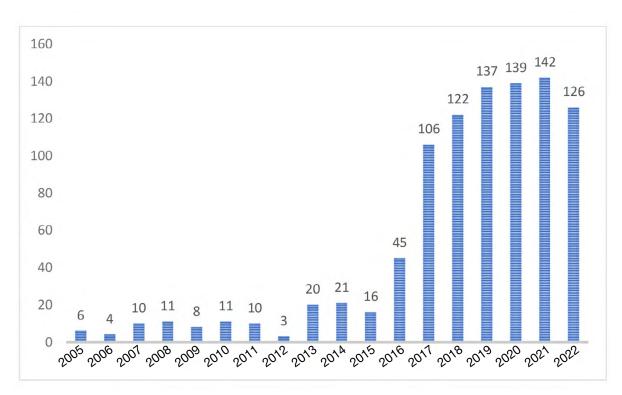


Figure 1: Preliminary number of publications per year related to gene drives

Findings

- 1. There are proposals in a wide range of species and taxonomic groups: showing there is momentum and ambition that goes far beyond mosquitoes and mice.
- 2. In the vast majority of cases the aim is to suppress or eradicate the target² (33 out of 37³), in some cases by modifying the target to render it susceptible to suppression.⁴
- 3. Compared to gene drive systems in insects, the systems in other taxonomic groups are further away from releases in the environment. The two most advanced systems where there is an intention to target the organism in the wild are both being developed in house mice (entries 1.1.1 and 1.7 in table). Neither of these systems have yet reached full proof of concept in the laboratory.
- 4. A significant amount of research has focussed on developing gene drives in mice, so far with limited success, though efforts are ongoing.
- 5. **Development of gene drives in mice is seen as a pathway to applying the technology in other mammals.** While this intention is often stated in general terms, an example that names a specific eventual target is the study from Castle *et al.* (2022) who use mice as a model organism with the ultimate aim of modifying deer (entries 1.6 and 11 in table).
- 6. No functional gene drive system has so far been constructed in plants. A homing CRISPR gene drive was reported in Arabidopsis (28) but the publication was later retracted. A 'gene drive like' system has been reported in *Nicotiana tabacum* (29), however the functionality of this system is limited, namely to producing point mutations in the mitochondrial genome.

³ Five species that are model organisms where there is no intention to apply the technology in the wild are excluded from this total, these are entries 22, 26-29 in the table

Targets where aim is suppression/eradication: 1, 3-10, 12-21, 23, 30 (this entry encompasses 13 invasive plant species).
Targets where aim is modification: 2, 11, 21 (but suppression also proposed for *B. glabrata*), 24, 31
In one case - 25- the intention has not yet been specified.

- 7. There appear to be significant obstacles in applying homing CRISPR gene drive technology in new species and taxonomic groups. While homing CRISPR gene drives appear to be functional in laboratory settings in dipteran insects (i.e. flies and mosquitoes)⁵ and some fungi (*S. cerevisiae* and *C. albicans*: 26.1-27), the technology is so far only partially functional in mice (1.1.1 1.6). Despite efforts to apply this technology more widely, it is not yet functional in plants (28), nematodes (22), flatworms (23) or in the fungi *Fusarium graminearum* (24.2).
- 8. It is possible that gene drive designs not based on homing CRISPR technology may be more effective in some species and taxonomic groups. Development of designs based on the T-haplotype in mice (1.7) and Spok1 in *F. graminearum* (24.1), appears to have made some progress in the laboratory.
- 9. Sixteen of the vertebrate targets relate to controlling or eliminating invasive species for conservation purposes, especially mammals.
- 10. While many proposals relate to eliminating invasive mammals on islands, there is ambition to apply gene drive technology for eradications at continental scale in Australia (e.g. see Birand, Cassey, Ross, Thomas, et al. (2022)). There is ongoing interest in Australia in a number of mammalian targets including house mice, black rats, rabbits, cats, and foxes, with a body of work published from 2017 through to the present day relating to some or all of these species.
- 11. A number of target species are integral and important species within ecosystems in their native range, for example the red fox, the possum or the rabbit. Other targets are able to cross-breed with endangered species, such as feral house cats with the European wild cat. Significantly Thresher (2022) argues that employing a gene drive that carries the risk of causing complete global extinction of the European rabbit would be justifiable because '....the species seriously threatens agriculture, and native flora and fauna in almost all it's extensive invasive ranges, and its loss, however serious, would still in turn damage only a limited ecosystem and set of economies.'

Please see main table (pp.6-28) for details of findings.

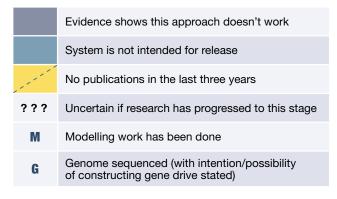
Concluding remarks

Undertaking a broad survey of the research in this field makes the bigger picture clearer, allowing one to perceive trends, as well as obstacles. The wide-ranging ambition for gene drive technology is remarkable, and yet the survey also reveals that homing CRISPR gene drives may not be as broadly applicable across different species and taxonomic groups as originally hoped. A prevalence of proposals to suppress and potentially eradicate species or populations, as opposed to modifying them, is evident. While the reasons for this are not completely clear - it is possible that gene drives are starting to be perceived as a form of species-specific pesticide.

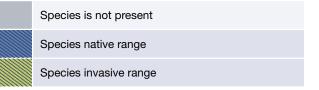
A key outcome of the survey is to raise questions: How might deployment of gene drive technology develop in the medium and long term? Is it going to become the go-to technology to tackle invasive species and 'pests'? From vertebrates to insects to plants, be it for agriculture, conservation, or forestry, will gene drives be used as pesticides have been in the past? If the technology develops on this trajectory – and we observe that many agencies and academics do appear to view it this way – then serious reflection and analysis will be required. Who will model the deployment as a whole and analyse or asses the consequences, especially with regards to cumulative effects? What would this mean for biodiversity, and what for risk assessment, regulation, and governance, especially on an international and global level? And could the technology be used for purposes other than those currently discussed in the literature?

Methodology

Please see end of document.


⁵ Wells, M. and Steinbrecher, R. Current and proposed insect targets for gene drive development. A horizon scanning survey. EcoNexus, July 2022. https://www.econexus.info/files/gene_drive_insect_table_econexus_2022.pdf. Note this survey is currently being updated.

Key to technology levels


- 1 Gene drive proposed
- 2 Gene drive proposed with supporting modelling work, or preliminary laboratory work funded
- 3 Preliminary laboratory work published
- 4 Research on gene drive construction funded
- 5 Limited proof of concept
- 6 Laboratory proof of concept
- 7 Non-insects- scaled up trials Insects - large cage trials
- Potential further contained trials
- Experimental releases in natural environment
- X Abandoned project

Please see page 26 for a complete explanation of the technology levels.

Colouring/symbols for progress of technology

Key to geographic distribution maps

Kingdo ANIM		Intended direct effect Intended use (as stated by authors) Class: Order: Mammals (Rodent)	Type of gene drive (our categories)Developer's name for gene drive systemSpecies ia) Rodents		to	expe	ose i erime vild?			-	m			Project leader(s) Institution	Funders
1.1	Mus musculus Ho	ming CRISPR – proof of conce	ept only												
1.1.1	Mus musculus House mouse	NA – intention is proof of concept homing CRISPR gene drive in mammals Initial aims: 1) using gene drive technology to create lab mouse strains carrying multiple modifications (with otherwise impractical genotypes) for laboratory studies 2) finding a way to eliminate invasive rodent species or addressing rodent-borne diseases	Homing CRISPR CRISPR-Cas9 mediated gene drive	(Grunwald <i>et al.</i> 2019, Weitzel <i>et al.</i> 2021, and Grunwald, Weitzel Cooper 2022)	1	2	3	4	5	6	7	8	9	K.L. Cooper University of California San Diego, USA	Kinship Pew Packard NIH Allen TATA UCSD
1.1.2		Population suppression Suppressing/eradicating invasive rodents on islands, and reducing impacts of rodents on agriculture	Split homing CRISPR CRISPR-Cas9 based gene drive (test both 'zygotic' and 'germline' forms)	(Pfitzner <i>et al.</i> 2020)	1	2	3	4	5	6	7	8	9	P.Q. Thomas University of Adelaide, Australia	DARPA
1.2	Mus musculus Ho	ming CRISPR – targetting fem	ale fertility												
1.2.1		Population suppression The 2017 press release says the aim is to improve pest control methods	Homing CRISPR (targeting 'haplosufficient female fertility gene') 'Homing gene drive targeting female fertility' (2018 paper) 'CRISPR-Cas9 split gene drive which disrupts an essential female fertility gene' (2019 poster)	(RoslinInstitute 2017) (McFarlane, Whitelaw, and Lillico 2018) - theoretical explanation of proposed GD designs (McFarlane <i>et al.</i> 2020) – poster abstract No results published except poster abstract	1	2	3	4	5	6	7	8	9	C.B.A. Whitelaw S.G. Lillico Roslin Institute, University of Edinburgh, UK	CSC BBSRC

	Species	Intended direct effect	Type of gene drive (our categories)	Publication(s) where research		ow clo expe					n			Project leader(s)	Funders
	Geographic range	Intended use (as stated by authors)	Developer's name for gene drive system	is described		the w		intari	eiea	1303					T unders
1.2.2		Population suppression 'eradicating mice from islands' or at continental scale [presumably Australia] to address their impacts on biodiversity	Homing CRISPR (targeting 'haplosufficient female fertility gene') Homing gene drive	(Brown 2021) - press release (Birand, Cassey, Ross, Russell, <i>et al.</i> 2022) (Birand, Cassey, Ross, Thomas, <i>et al.</i> 2022)	1	2 M	3	4	5	6	7	8	9	T.A.A. Prowse P.Q. Thomas University of Adelaide, Australia	ARC New South Wales Government South Australia Government
1.2.3		Population suppression 'Suppressing' invasive rodents on islands to reduce	Homing CRISPR (targeting locally ¹ fixed alleles of female fertility genes) Localized synthetic gene drive	(Sudweeks <i>et al.</i> 2019, Oh <i>et al.</i> 2021)	1	2 M	3 G	4	5	6	7	8	9	A.L. Lloyd North Carolina State University, USA + A.J. Piaggio	DARPA
		impacts on biodiversity, agriculture and human health	gene unve											USDA APHIS Wildlife Services, USA	
1.2.4		Population suppression 'eradication of alien rodents on islands' to address impacts on bio-diversity The impacts of rodents on agriculture are also noted as a driver	Homing CRISPR – four ² designs modelled 'CRISPR gene drive' 'Homozygotic XX sterility'	(Prowse <i>et al.</i> 2017) (see also entries 1.3.3 and 1.5)	1	2 M	3	4	5	6	7	8	9	T.A.A. Prowse University of Adelaide, Australia	University of Adelaide

Locally fixed alleles refers to alleles found in specific geographic locations - sometimes also referred to as 'private alleles'
The designs modelled in this publication are covered in entries 1.2.4, 1.3.3 and 1.5

	Species	Intended direct effect	Type of gene drive (our categories)	Publication(s) where research					ain/s relea	ystei	m			Project leader(s)	Funders
	Geographic range	Intended use (as stated by authors)	Developer's name for gene drive system	is described		the w		intai		1363				institution	T under 5
1.3	Mus musculus Ho	oming CRISPR sex ratio distort	er – Sox9 cargo ³												
1.3.1		Population suppression	CRISPR based gene drive involving <i>Sox9</i> – probably a homing CRISPR drive with <i>Sox9</i> cargo	(Campbell <i>et al.</i> 2019) No results published despite substantial	1	2	3	4 ?	5	6	7	8	9	Probably P.Q. Thomas University of Adelaide, Australia	DARPA
		'eradicating invasive rodent populations on islands' to address impacts on biodiversity	Paper describes development of 'CRISPR/Cas9 and CRISPR/Cpf1 ⁴ gene drives with <i>Sox9</i> and Y-shredder'	funding (the work described in entry 1.3.3 may have informed this project)				?							
.3.2		Population suppression	Homing CRISPR (with <i>Sox9</i> cargo)	(Brown, Eikenbary, and Landis 2022)	1	2 M	3	4	5	6	7	8	9	W.G. Landis Western	Funders not stated
		Eradicating invasive mouse populations on islands to address biodiversity impacts - with the Southeast Farallon island used as a case study	' <i>sox9</i> CRISPR cas9 gene drive'											Washington University, USA	
.3.3		Population suppression	Homing CRISPR - four designs modelled ²	(Prowse <i>et al.</i> 2017)	1	2 M	3	4	5	6	7	8	9	P.Q. Thomas University of	University of Adelaide
		'eradication of alien rodents on islands' to address impacts on bio-diversity Aim ultimately is also to address impacts of alien rodents (esp. mice and rabbits) on agricultural production	'CRISPR gene drive' Variants named: 'Heterozygotic XX sterility' 'Heterozygotic XX sex reversal'	(see also entries 1.2.4 and 1.5)										Adelaide, Australia	

Sox9 is an autosomal gene that codes for a developmental transcription factor crucial for sex determination.

4 Cpf1 is the old term for what is now named Cas12a

	Species	Intended direct effect	Type of gene drive (our categories) Developer's name	Publication(s) where research is described	to	expe	ose is rime vild?			-	m			Project leader(s) Institution	Funders
	Geographic range	(as stated by authors)	for gene drive system				- Tar								
1.4	Mus musculus Ho	ming CRISPR sex ratio distor	ter – 'Y-shredder' cargo												
1.4		Population suppression	Homing CRISPR (with 'Y shredder' cargo)	(Prowse <i>et al.</i> 2019, Campbell <i>et al.</i> <i>al.</i> 2019) No results	1	2 M	3	4 ?	5	6	7	8	9	J.V. Ross University of Adelaide, Australia	DARPA
		'Suppression or eradication' of rodent populations to reduce impacts on biodiversity and agriculture	Y chromosome shredding gene drive (Campbell <i>et al</i> , 2019) 'Y-Chromosome deletion using Orthogonal Programmable Endonucleases (Y-CHOPE)' (Prowse <i>et al</i> 2019)	regarding gene drive construction published				? ?							
1.5	Mus musculus Ho	oming CRISPR causing recess	ive emrbyonic lethality												
1.5		Population suppression	Homing CRISPR – four designs modelled ²	(Prowse <i>et al.</i> 2017) (see also entries	1	2 M	3	4	5	6	7	8	9	P.Q. Thomas University of Adelaide, Australia	University of Adelaide
		'eradication of alien rodents on islands' to address impacts on bio-diversity The impacts of rodents on agriculture are also noted as a driver	'CRISPR gene drive' 'Homozygotic embryonic non- viability'	1.2.4 and 1.3.3)											
1.6	Mus musculus Fe	asibility study for homing CRI	SPR for population mod	ification in deer (see	e ent	ry ni	umbe	er 11))						
1.6		Population modification To demonstrate feasibility of a gene drive rendering wild deer immune to chronic wasting disease [by spreading <i>PRNP</i> null alleles]	Homing CRISPR CRISPR/Cas9 gene drive	(Castle <i>et al.</i> 2022)	1	2	3	4	5	6	7	8	9	D. Westaway University of Alberta, Canada	Alberta Prion Research Institute CFI University of Alberta

	Species	Intended direct effect	Type of gene drive (our categories)	Publication(s)					ain/s		n			Project leader(s)	From dama
	Geographic range	Intended use (as stated by authors)	Developer's name for gene drive system	where research is described		he w		ntal	relea	ses				Institution	Funders
1.7	Mus musculus T-	haplotype ⁵ targetting female fe	ertility												
1.7		Population suppression	Split drive: a) <i>T</i> -haplotype element with gRNA cargo targeting 'haplosufficient female fertility gene' (<i>Prl</i>) b) Cas9 expressed separately (in male germline)	(Gierus <i>et al.</i> 2022)	1	2 M	3	4	5	6	7	8	9	P.Q. Thomas University of Adelaide, Australia	Funders not stated in pre- print publicatio
		Aim is to explore the potential of an engineered form of the <i>T</i> -haplotype for 'mouse population suppression or even eradication on islands'	tCRISPR split drive												
.8	Mus musculus T-	haplotype sex ratio distorter -S	ry ⁶ cargo (T-Sry)												
1.8.1		Population suppression	<i>T</i> -haplotype sex ratio distorter (carrying <i>Sry</i> cargo)	(Leitschuh <i>et al.</i> 2018, Campbell <i>et al</i> . 2019)	1	2	3	4	5	6	7	8	9	J. Godwin North Carolina State University,	NSF DARPA
		Eradicating invasive populations on islands to address biodiversity impacts	<i>T</i> -complex drive	No results published despite substantial funding										USA	
1.8.2			7-haplotype sex ratio distorter (carrying SRY cargo)	(Backus and Gross 2016)	1/	2/ M	3	4	5	6	7	8	9	K. Gross North Carolina State University,	North Carolina State University NSF
			t-Sry											USA	

- 5 *T*-haplotype or t-complex is a selfish genetic element functioning as a meiotic drive and sex-ratio distorter that naturally occurs in mice, though does not spread widely. It is a form of a toxinantidote system and allows for the insertion of 'cargo' genes into the t-complex, for example female infertility genes such as *Sry*. The *t*-haplotype is linked to the occurrence of taillessness (gene symbol T), which gave it its name.
- 6 Sry is a Y-chromosomal gene responsible for sex determination (sex-determining region Y) and is required for initiating male development. It is also described as the male phenotype control gene. In females it will result in infertility due to partial male development.

1.8.3	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories)Developer's name for gene drive systemT-haplotype sex ratio distorter (carrying Sry cargo)synthetic sperm-killing gene drive: 't-Sry'	Publication(s) where research is described (Manser <i>et al.</i> 2019)	How of to exp in the	wild?				n 7	8	9	Project leader(s) Institution T.A.R. Price University of Liverpool, UK	Funders SNSF UK NERC
1.9	Mus musculus Y Ii	nked 'X-shredder' gene drive Population suppression 'eradicating mice from islands' or at continental scale [presumably Australia] to address their impacts on biodiversity	CRISPR based X-shredder gene drive ('driving Y') X chromosome shredding gene drive	(Brown 2021) (Birand, Cassey, Ross, Russell, <i>et al.</i> 2022) (Birand, Cassey, Ross, Thomas, <i>et al.</i> 2022)	1 2 N		4	5	6	7	8	9	T.A.A. Prowse P.Q. Thomas University of Adelaide, Australia	ARC New South Wales Government South Australia Government
Kingdo ANIN 2.1	om: Class: MALS Mammals Peromyscus leucopus White footed mouse White footed mouse After Cassola <i>et al.</i> 2016		Species: Other rodents Not specified Not specified	(Long <i>et al.</i> 2019)	1 2	3 G	4	5	6	7	8	9	A.G. Barbour University of California Irvine	NIH Bay Area Lyme Foundation UCI USC DoD
2.2			CRISPR daisy drive	(Buchthal <i>et al</i> . 2019)	1 2	3	4	5	6	7	8	9	K.M. Esvelt MIT, USA	Greenwall Rainwater CDMRP - DoD

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to		rime	ntal		yster Ises	n			Project leader(s) Institution	Funders
3.1	<i>Rattus norvegicus</i> Brown rat	Population suppression	Homing CRISPR (targeting 'haplosufficient female fertility gene' or 'haplosufficient zygote viability gene') and 'Y-shredder' (located on X-chromosome)	(Champer <i>et al.</i> 2021)	1	2 M	3	4	5	6	7	8	9	P.W. Messer Cornell University, USA	Predator Free NZ NIH Bio-heritage NZ UK NERC
	After Khlyap 2012, appended after Hulme- Beaman 2021.	Eradicating invasive rat populations on islands to address their impacts on biodiversity	Three drives modelled: 'homing drive' targeting either female fertility or zygote viability; and 'Y-shredder located on the X-chromosome'												
3.2		Population suppression	Homing CRISPR	(Dearden <i>et al</i> . 2018)	1/	2	3	4	5	6	7	8	9	D.R. Penman Lincoln University, New Zealand	Funder not stated
		To eradicate invasive populations in New Zealand	NA – proposal only												
3.3		Population suppression	Homing CRISPR (targeting 'haplosufficient female fertility gene')	(RoslinInstitute 2017) (McFarlane, Whitelaw, and	1/	2	3	4	5	6	7	8	9	C.B.A. Whitelaw S.G. Lillico Roslin Institute, University of	CSC BBSRC
		'to curb pest rodent populations'	Homing gene drive targeting female fertility	Lillico 2018)										Edinburgh, UK	
3.4		Population suppression	Not specified – t-haplotype and homing CRISPR both mentioned	(Godwin <i>et al.</i> 2019)	1/	2	3	4	5	6	7	8	9	P.Q. Thomas University of Adelaide, Australia	DARPA
		To control/ eliminate invasive populations on islands	NA – proposal only												
3.5		Population suppression	T-haplotype sex ratio distorter (carrying SRY cargo)	(Manser <i>et al.</i> 2019)	1	2	3	4	5	6	7	8	9	T.A.R. Price University of Liverpool, UK	SNSF UK NERC
		To eradicate invasive populations on islands	synthetic sperm-killing gene drive: 't-Sry'												

	Species	Intended direct effect	Type of gene drive (our categories)	Publication(s) where research	to	expe	rime			yster Ises	n			Project leader(s) Institution	Funders
	Geographic range	(as stated by authors)	Developer's name for gene drive system	is described	in t	the w	/ild?								
4.1	<i>Rattus rattus</i> Common rat or black rat	Population suppression	Homing CRISPR – two variants modelled	(Prowse <i>et al.</i> 2017)	1	2 M	3	4	5	6	7	8	9	P.Q. Thomas University of Adelaide, Australia	University of Adelaide
	Shield & Veitch, 2023 7	'eradication of alien rodents on islands' to address impacts on bio-diversity.The impacts of rodents on agriculture are also noted as a driver.	'CRISPR gene drive' Two variants modelled: 'Homozygotic embryonic non- viability' 'Homozygotic XX sterility'												
4.2		Population suppression	Homing CRISPR (targeting 'haplosufficient female fertility gene' or 'haplosufficient zygote viability gene') or 'Y-shredder' located on X-chromosome	(Champer <i>et al</i> . 2021)	1	2 M	3	4	5	6	7	8	9	P.W. Messer Cornell University, USA	Predator Free NZ NIH Bio-heritage NZ UK NERC
		Eradicating invasive rat populations on islands to address their impacts on biodiversity	Three drives modelled: 'homing drive' targeting either female fertility or zygote viability 'Y-shredder located on the X-chromosome'												
4.3		Population suppression	Homing CRISPR or 'Y-linked X shredder'- Y-chromosome-linked X-shredder	(Birand, Cassey, Ross, Thomas, <i>et</i> <i>al.</i> 2022)	1	2 M	3	4	5	6	7	8	9	T.A.A. Prowse University of Adelaide, Australia	ARC New South Wales Government South Australia
		Eradication of this species at continental scale, presumably in Australia, to address impacts on biodiversity	shredding drive ('driving-Y') or 'CRISPR homing drive targeting female fertility'												Government

7 This map shows countries and regions where this species is present, and so does not show the true geographic range. It may be that the species is not present in the whole territory of a country, for example it is probably absent from Arctic areas of Canada.

	Species	Intended direct effect	Type of gene drive (our categories)	Publication(s) where research					ain/s relea		n			Project leader(s)	Funders
	Geographic range	Intended use (as stated by authors)	Developer's name for gene drive system	is described			vild?								
4.4		Population suppression	Homing CRISPR	(Dearden <i>et al.</i> 2018)	1	2	3	4	5	6	7	8	9	D.R. Penman Lincoln University, New Zealand	Funder not stated
		To eradicate invasive populations in New Zealand	NA – proposal only												
4.5		Population suppression	Homing CRISPR	(Moro <i>et al</i> . 2018)	1/	2	3	4	5	6	7	8	9	M. Tizard Australian Animal	No specific funder acknowledged
		To control or eradicate invasive populations in Australia	RNA-guided gene drive											Health Laboratory, Australia	acknowledged
4.6		Population suppression	Not specified – t-haplotype and homing CRISPR both mentioned	(Godwin <i>et al.</i> 2019)	1/	2	3	4	5	6	7	8	9	P.Q. Thomas University of Adelaide, Australia	DARPA
		To control/ eliminate invasive populations on islands	NA – proposal only												
4.7		Population suppression	T-haplotype sex ratio distorter (carrying SRY cargo)	(Manser <i>et al.</i> 2019)	1/	2	3	4	5	6	7	8	9	T.A.R. Price University of Liverpool, UK	SNSF UK NERC
		To eradicate invasive populations on islands	synthetic sperm-killing gene drive: 't-Sry'												
4.8		Population suppression	Homing CRISPR	(Thresher 2022)	1	2	3	4	5	6	7	8	9	A.C. Thresher University of	Not stated
		To eradicate invasive populations in New Zealand	'CRISPR/Cas9 suppression-drive'											California San Diego, USA	

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to e	expe			ain/s relea		m			Project leader(s) Institution	Funders
5	<i>Sciurus carolinensis</i> Grey squirrel	Population suppression	Homing CRISPR + Cleave and Rescue [Toxin Antidote] CRISPR combination, with 'daisy-field'	(Faber <i>et al</i> . 2021)	1	2 M	3	4	5	6	7	8	9	G. Gorjanc Roslin Institute, University of Edinburgh, UK	BBSRC
		To 'control a targeted grey squirrel population' to reduce impacts on biodiversity and damage to property in the UK (where it is invasive)	HD-ClvR: 'composed of homing (H), daisyfield (D), and cleave-and-rescue (ClvR) gene drives' (a highly speculative and complex drive)												
6.1	<i>Rattus exulans</i> Polynesian rat	Population suppression	Homing CRISPR	(Dearden <i>et al.</i> 2018)	1	2	3	4	5	6	7	8	9	D.R. Penman Lincoln University, New Zealand	Funder not stated
	After Ruedas et al. 2016	To eradicate invasive populations in New Zealand to prevent predation of native species	NA – proposal only												
6.2		Population suppression	Not specified – t-haplotype and homing CRISPR both mentioned	(Godwin <i>et al.</i> 2019)	1/	2	3	4	5	6	7	8	9	P.Q. Thomas University of Adelaide, Australia	DARPA
		To control/ eliminate invasive populations on islands	NA – proposal only												
Kingdo ANIN		Order: <i>Carnivora</i> (Cats, dogs a	nd related mamma	ls)											
7.1	<i>Felis catus</i> House cat & feral cat	Population suppression	Not stated	(Australian Wildlife Conservancy 2022)	1	2	3	4	5	6	7	8	9	Not known	AWC and/or CSIRO
	After Bengsen <i>et al.</i> 2015	To eradicate or control feral cats in Australia to reduce predation of native species	Not stated												

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to	w clo expe the w	rime	ntal			m			Project leader(s) Institution	Funders
7.2	Felis silvestris (wild cat). After Yamaguchi <i>et al.</i> 2015 ⁸	Population suppression	Homing CRISPR or 'Y-linked X shredder'- Y-chromosome- linked X-chromosome shredding drive	(Birand, Cassey, Ross, Thomas, <i>et</i> <i>al.</i> 2022)	1	2 M	3	4	5	6	7	8	9	T.A.A. Prowse University of Adelaide, Australia	ARC New South Wales Government South Australia Government
		Eradication at continental scale, presumably in Australia, to address impacts on biodiversity	('driving-Y') or 'CRISPR homing drive targeting female fertility'												
7.3		Population suppression	Homing CRISPR	(Moro <i>et al</i> . 2018)	1	2	3	4	5	6	7	8	9	M. Tizard Australian Animal Health Laboratory, Australia	No specific funder acknowledged All authors appear to be Australian
		Eradication or control of feral cats in Australia to address their impact on biodiversity, i.e. native fauna.	RNA-guided gene drive												Government employees
8.1	<i>Vulpes vulpes</i> European red fox	Population suppression	Homing CRISPR or 'Y-linked X shredder' Y-chromosome-linked X-chromosome- shredding drive	(Birand, Cassey, Ross, Thomas, <i>et</i> <i>al.</i> 2022)	1	2 M	3	4	5	6	7	8	9	T.A.A. Prowse University of Adelaide, Australia	ARC New South Wales Government South Australia Government
	After Hoffman & Sillero- Zubri, 2021	Eradication at continental scale, presumably in Australia, to address impacts on biodiversity	'driving-Y' or 'CRISPR homing drive targeting female fertility'												

8 We have included the range of the wild cat, Felis silvestris, which can readily hybridise with the domestic cat, Felis catus.

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	How clo to expe in the v	rime				n			Project leader(s) Institution	Funders
8.2		Population suppression Suppression/eradication to address decline in 'Australia's terrestrial mammal fauna' caused by predation by foxes. The paper also states 'foxes are a serious agricultural pest'.	Homing CRISPR RNA-guided gene drive	(Moro <i>et al</i> . 2018)	1 2	3	4	5	6	7	8	9	M. Tizard Australian Animal Health Laboratory, Australia	No specific funder acknowledged All authors appear to be Australian Government employees
9	<i>Mustela erminea</i> Stoats	Population suppression To control or eradicate this invasive species in New Zealand to reduce predation of native birds including kiwis	Homing CRISPR NA – proposal only	(Dearden <i>et al.</i> 2018)	1 2	3	4	5	6	7	8	9	D.R. Penman Lincoln University, New Zealand	Funder not stated
Kingdo ANIN		^{Order:} <i>Diprotodontia</i> (Possum	s and related mars	upials) 📀										
10	<i>Trichosurus vulpecula</i> Brushtail possum	Population suppression To control or eradicate this invasive species in New Zealand to reduce damage	Homing CRISPR NA – proposal only	(Dearden <i>et al.</i> 2018)	1 2	3	4	5	6	7	8	9	D.R. Penman Lincoln University, New Zealand	Funder not stated
		to native trees and the spread of bovine tuberculosis												
Kingdo ANIN		to native trees and the spread	related mammals)											

	Species Geographic range	Intended direct effect Intended use	Type of gene drive (our categories) Developer's name	Publication(s) where research is described	to	w clo expe the w	rime			yster Ises	n			Project leader(s) Institution	Funders
Kingdo ANIM	om: Class:	(as stated by authors) Order: Lagomorpha (Rabbits a	for gene drive system											Theoreti	cal studies only
12.1	Oryctolagus cuniculus European rabbit	Population suppression Eradication of invasive rabbit populations on islands to address biodiversity impacts Impacts of rabbits on agriculture are also noted	Homing CRISPR – two variants modelled CRISPR gene drive Two variants modelled: 'Homozygotic embryonic non- viability' 'Homozygotic XX sterility'	(Prowse <i>et al.</i> 2017)	1	2 M	3	4	5	6	7	8	9	P.Q. Thomas University of Adelaide, Australia	University of Adelaide
12.2		Population suppression Eradication at continental scale, presumably in Australia, to address impacts on biodiversity	Homing CRISPR or 'Y-linked X shredder'- Y-chromosome- linked X-chromosome shredding drive 'driving-Y' or 'CRISPR homing drive targeting female fertility'	(Birand, Cassey, Ross, Thomas, <i>et</i> <i>al.</i> 2022)	1	2 M	3	4	5	6	7	8	9	T.A.A. Prowse University of Adelaide, Australia	ARC New South Wales Government South Australia Government
12.3		Population suppression Control or eradication of this invasive species in Australia - to address biodiversity and agricultural impacts	Homing CRISPR RNA-guided gene drive	(Moro <i>et al</i> . 2018)	1	2	3	4	5	6	7	8	9	M. Tizard Australian Animal Health Laboratory, Australia	No specific funder acknowledged

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to e		ose is rimen ild?				n			Project leader(s) Institution	Funders
12.4	1	Population suppression	Homing CRISPR	(Thresher 2022)	1	2	3	4	5	6	7	8	9	A.C. Thresher University of	Funder not stated
		Eradication of this species where it is invasive, e.g. New Zealand	'CRISPR/Cas9 suppression-drive'											California San Diego, USA	
ingd NIN	om: Class: S MALS Birds	•												Theoreti	cal studies only
3	<i>Sturnus vulgaris</i> Common starling	Population suppression	Homing CRISPR	(Moro <i>et al.</i> 2018)	1	2	3	4	5	6	7	8	9	M. Tizard Australian Animal Health Laboratory, Australia	No specific funder acknowledged All authors appear to be
		Suppression to address 'impacts to biodiversity and agriculture', however this species is noted for the damage it causes to crops so this is likely the primary driver	RNA-guided gene drive												Australian Government employees
ingd NII	om: Class: MALS Amphibian	s र													
	Bufo marinus or	Babulation outpersocian													
4.1	Rhinella marina Cane toad	Population suppression Suppression to address impacts on native species in Australia, which are either predated by toads or poisoned by eating them.	Homing CRISPR RNA-guided gene drive	(Moro <i>et al.</i> 2018) (Cooper <i>et al.</i> 2020) – conference abstract	1	2	3	4	5	6	7	8	9	M. Tizard Australian Animal Health Laboratory, Australia	No specific funder acknowledged All authors appear to be Australian Government employees

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to	w clo expe the w	rime			ystei ises	n			Project leader(s) Institution	Funders
15	<i>Eleuthero-dactylus coqui</i> Caribbean tree frog	Population suppression	Homing CRISPR	(Thresher 2022) Feasibility study	1	2	3	4	5	6	7	8	9	A.C. Thresher University of California San Diego, USA	Funder not stated
		Eradication or suppression of this species, (accepting risk of global extinction), to address biodiversity impacts of invasive populations	'CRISPR/Cas suppression-drive'												
Kingd ANIN		~													
16	<i>Cyprinus carpio</i> European carp	Population suppression Control of invasive populations of this species	Not specified Not specified	(Minnesota Aquatic Invasive Species Research Centre 2022)	1	2	3	4 ? ?	5	6	7	8	9	M. Smanski University of Minnesota	ENRTF
16 17				Aquatic Invasive Species Research	1		3	?	5	6	7 7	8	9 9	University of	ENRTF Funder not stated

	Species	Intended direct effect	Type of gene drive (our categories)	Publication(s) where research			ose is rime			-	n			Project leader(s)	Funders
	Geographic range	Intended use (as stated by authors)	Developer's name for gene drive system	is described		the w									
Kingdo ANIM														Theoreti	cal studies only
18.1	<i>Petromyzon marinus</i> Sea lamprey	Population suppression or population modification to enable suppression	Options proposed include: Split homing CRISPR 'Y-Linked X-shredder' Homing CRISPR Toxin Antidote	(Ferreira-Martins <i>et al.</i> 2021)	1	2	3	4	5	6	7	8	9	M.S. Docker University of Manitoba, Canada	Funders not stated
	After NatureServe, 2013 ⁹	Suppression or eradication of the lamprey from the North American Great Lakes to prevent this parasitic species damaging fish stocks	Options proposed include: 'Split gene drive' 'Driving y' 'Homing suppression gene drive' 'Toxin-antidote gene drive'												
18.2		Population suppression Suppression or eradication of the lamprey from the North American Great Lakes to prevent this parasitic species damaging fish stocks	Homing CRISPR CRISPR mediated gene drive	(York, Thresher, and McCauley 2021)										D.W. McCauley University of Oklahoma, USA	Funders not stated
Kingdo ANIM		Class: Arachnids													
19	<i>Tetranychidae family</i> Spider mites	Propose population replacement (to render them more susceptible to insecticides)	Homing CRISPR	(Li <i>et al.</i> 2020)	1	2	3	4	5	6	7	8	9	B.E. Tabashnik University of Arizona, USA	BARD
		Reduction of damage to agricultural and horticultural crops	NA -preliminary theoretical study												

9 This map shows only the inland range for this species, that is watersheds and freshwater lakes where it is present. The species lives part of its life in saltwater and its native range also 'includes the Atlantic coast of North America from Newfoundland to northern Florida, the Atlantic coast of Europe, and the Baltic, western Mediterranean and Adriatic seas.' (Government of Ontario, 2018). In the great lakes, where it is invasive, it has adapted to live entirely in freshwater conditions (Government of Ontario, 2018).

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to e		ose is rimen vild?			-	m			Project leader(s) Institution	Funders
20	<i>Varroa destructor</i> Varroa mite	Population modification to enable suppression Suppression or eradication of varroa mites from	Homing CRISPR (homing) CRISPR Cas9 gene drive	(Faber <i>et al.</i> 2021) 1	1	2 M	3	4	5	6	7	8	9	B.A. Harpur Purdue University, USA	BBSRC University of Edinburgh Purdue
		honeybee colonies to prevent harm to the colony and honey production													University Project Apis N
	om: Phylum: MALS Arthropods EPARATE TABLE	Class: Insects			· · · · ·				1	-1					
		Class: Gastropods									_	_	_		
Kingd ANII 21.1			Not specified but cites examples of homing CRISPR	(Hambrook <i>et al.</i> 2020)	1	2	3	4	5	6	7	8	9	P.C. Hannington University of Alberta, Canada	NSERC

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to	ow clo expe the w	rime				m			Project leader(s) Institution	Funders
21.2	<i>Biomphalaria glabrata</i> (and other snails of <i>Biomphalaria,</i> <i>Bulinus,</i> <i>Oncomelania &</i> <i>Neotricul</i> genera which host schistosome parasites)	Population suppression and/or Population modification	Several approaches proposed	(Maier <i>et al.</i> 2019) - presentation	1	2	3	4	5	6	7	8	9	M. Zamanian University of Wisconsin, USA J. Reinhard-Rupp Global Health Institute of Merck, Switzerland	Global Health Institute of Merck
	All <i>Biomphalaria</i> species susceptible to <i>Schistosoma</i> <i>mansoni</i> . After Habid <i>et al</i> 2020 11	'Modification of natural snail populations' to reduce 'schistosomiasis prevalence and transmission'	Several approaches proposed												
21.3	Biomphalaria glabrata	Population modification The aim is to modify snail populations to increase their immunity to schistosome infection, thereby disrupting the schistosome lifecycle and reducing transmission to humans	Homing CRISPR CRISPR gene drive	(Grewelle <i>et al.</i> 2022)	1	2 M	3	4	5	6	7	8	9	G.A. De Leo Stanford University, USA	Stanford University NSF
Kingdo ANIN		କ୍ଷ													
22	Caenorhabditis brenneri	Proof of principle experiments – not intended for release	daisy-chain drive, daisyfield drive, daisy quorum drive	(Esvelt 2017b) (Esvelt 2017a) No results have been	1	2	3	4	5	6	7	8	9	K.M. Esvelt MIT, USA	DARPA This funding has now ended
		to 'test and optimize daisy- chain, daisyfield, and daisy quorum drives—including for daisy restoration—in fast-reproducing laboratory populations of worms '	daisy-chain drive, daisyfield drive, daisy quorum drive	published despite substantial funding											

11 This maps show countries where these species are present, and does not show the exact geographic range.

Kingd	Species Geographic range om: Phylum: MALS Flatworms	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to		rime		ain/s relea	syste ases	m			Project leader(s) Institution	Funders
23	Schistosoma genus Blood flukes	Population suppression To suppress schistosome parasites to thereby reduce human morbidity and mortality from schistomiasis	Z linked W-shredder, with variable parameters (as described by Holman, 2019) One proposal would be a Z linked 'W-shredder' (as described by Holman, 2019) 'all of the offspring will be born either female or male.' (AAAS 2016)	(AAAS 2016) (Holman 2019) No results have been published	1	2	3	4	5	6	7	8	9	K.M. Esvelt MIT, USA P. Brindley George Washington University, USA	MaxMind and probably others This funding has likely ended
Kingd FUN															
24	Fusarium graminearum	Population modification To modify populations of <i>F. graminearum</i> to disrupt virulence factors in this	Engineered gene drive employing <i>Spok1</i> (spore killer meiotic drive from <i>Podospora</i> spp.) <i>Spok1</i>	(Gardiner et al. 2020, Urquhart and Gardiner, 2022) ¹²	1	2	3	4	5	6 ? ? ?	7	8	9	K. Kazan CSIRO, Queensland, Australia D. M. Gardiner CSIRO,	CSIRO ARC Australian Goverment
		species, and so reduce head blight in wheat and barley												Queensland, Australia	
24.1		Population modification To modify populations of the <i>F. graminearum</i> (presumably for same reasons as in 20.1)	Split homing CRISPR Do not use any particular term – but give detailed description of design	(Gardiner <i>et al.</i> 2020)	1	2	3	4	5	6	7	8	9	K. Kazan Agriculture and Food, CSIRO, Australia	CSIRO
25	Fusarium verticillioides	To control this plant pathogen which causes 'ear and stalk rot of maize' and which can 'contaminate maize kernels with fumonisin mycotoxins'	Engineered gene drive employing <i>Spore Killer</i> <i>Candidate-1 (SKC1)</i> from F. verticillioides	(Lohmar, Rhoades, Hammond, et al. 2022) (Lohmar, Rhoades, Patel, et al. 2022)	1	2	3	4	5	6	7	8	9	T. M. Hammond University of Illinois, USA Daren W Brown	NSF USDA
		Not specified	'SKC1 based control practices' [which would 'require modifications to SKC1']											USDA, Agricultural research service, Illinois, USA	

12 Urquhart and Gardiner (2022) report further experimental work to characterise *Spok1* using the model organisms *S. cerevisiae* and *E. coli*. The 'genetic control of plant-pathogenic fungi' is mentioned as a possible future goal, with *F. graminearum* mentioned specifically.

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to	expe	ose i erime vild?			syste ises	n			Project leader(s) Institution	Funders
26.1	<i>Saccharomyces</i> <i>cerevisiae</i> brewer's or baker's yeast	Population modification	Split homing CRISPR	(DiCarlo <i>et al.</i> 2015)	1	2	3	4	5	6 ? ?	7	8	9	G.M. Church Harvard Medical School, USA	DOE NCI NIDDK Wyss Institute
		Proof of principle of population modification via a split homing gene drive in this model organism	'split CRISPR-Cas9 gene drive'							?					
26.2		Population modification	Probably homing CRISPR (as team had used this technology in other work)	(Aguilera 2017) - press release No results published	1	2	3	4	5	6	7	8	9	S. Kryazhimsky J. Meyer University of	DARPA
		To study gene drives over many generations to understand the emergence of resistance	NA – no publications											California San Diego, USA	
26.3		Population modification	Split homing CRISPR	(Roggenkamp <i>et</i> <i>al</i> . 2018, Goeckel	1	2	3	4	5	6	7	8	9	G.C. Finnigan	NIH
		To test various methods to modulate gene drive activity, e.g. Cas9 expression level (Roggenkamp <i>et al.</i> 2018) and Cas9 nuclear localisation (Goeckel <i>et al.</i> 2019)	CRISPR-Cas9 gene drive / CRISPR gene drive	et al. 2019)						? ? ?				Kansas State University, USA	USDA Kansas State University
26.4		Population modification	Multi-locus split homing CRISPR	(Yan and Finnigan 2018)	1	2	3	4	5	6	7	8	9	G.C. Finnigan Kansas State	NIH USDA
		To test a split gene drive system to simultaneously propagate gene drives at three different loci	multi-locus CRISPR gene drive							? ? ?				University, USA	
26.5		Population modification	Split homing CRISPR employing Cas12a	(Lewis, Yan, and Finnigan 2021)	1	2	3	4	5	6	7	8	9	G.C. Finnigan Kansas State	Kansas State University
		Proof of principle of population modification via a split homing gene drive based on Cas12a	'Cas12a-based gene-drive system'							? ? ?				University, USA	USDA

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	to e	expe		s stra intal		ystei ises	m			Project leader(s) Institution	Funders
26.6		Population modification To generate a library of 'all combinations of 10 missense mutations from across the genome' to study interactions between these mutations (epistasis)	Split homing CRISPR 'hierarchical' CRISPR gene drive	(Bakerlee <i>et al.</i> 2022)	1	2	3	4	5	6 ? ? ?	7	8	9	M.M. Desai Harvard University, USA	DoD NSERC Canada NIH NSF
27	Candida albicans	Population modification To create single and double deletion mutants in this species for laboratory studies	Split homing CRISPR CRISPR-Cas9 based gene drive	(Shapiro <i>et al</i> . 2018, Halder <i>et al</i> . 2019)	1	2	3	4	5	6 ? ?	7	8	9	J. Collins MIT & Harvard University, USA R.S. Shapiro University of Guelph, Canada	Allen CIHR NIH Wyss Institute NSERC Canada Banting Burroughs Wellcome Fund
Kingd PLAI															
28	<i>Arabidopsis thaliana</i> Thale cress	Population modification The intention was to demonstrate a gene drive system in a plant model species. The authors state this technology could	Homing CRISPR CRISPR/Cas9-based gene drive	(Zhang, Mudgett, <i>et al.</i> 2021, Zhang <i>et al.</i> 2022) paper WITHDRAWN after a year	1	2	3	4	5	6	7	8	9	Y. Zhao University of California San Diego, USA	TIGS UCSD NIH
29	<i>Nicotiana tabacum</i> Tobacco	'accelerate crop breeding' Population modification The aim is to demonstrate a technology for modifying the plant mitochondrial genome for laboratory experiments and to 'enable the exploitation of mitochondria in biotechnology and synthetic biology'	TALEN gene-drive mutagenesis transcription activator- like effector nuclease (TALEN) gene-drive mutagenesis (GDM), or TALEN-GDM	(Forner <i>et al.</i> 2022)	1	2	3	4	5	6	7	8	9	R. Bock Max Planck Institute for Molecular Plant Physiology, Germany	Max Planck Society ERC

Species	Intended direct effect	Type of gene drive (our categories)	Publication(s) where research	How close to experin in the wild					m			Project leader(s)	Funders	
Geographic range	Intended use (as stated by authors)	Developer's name for gene drive system	is described				, incari				1			
ANTS														
Various weed and invasive species: Alopecurus mysuroides Black grass ¹³ Amaranthus palmeri Palmer amaranth ¹³ Amaranthus Tuberculatus Rough fruited water hemp ¹³ Ambrosia artemisiifolia Common ragweed ¹³ Cynodon dactylon Bermuda grass ¹³ Cyperus rotundus Purple nut sedge ¹³ Eichhornia crassipes Water hyacinth Kochia scoparia Kochia ¹³ Lantana camara Common lantana ¹³ Lolium rigidum Rigid rye grass ¹³	Population modification to enable suppression To reduce the presence and impact of weed species on agricultural production by modifying them, potentially to render them less competitive, or more sensitive to herbicide. It might also be used to tackle other invasive plant species.	Homing CRISPR is most common proposed technology NA - Proposals only	(Neve 2018) (Kumaran <i>et al.</i> 2020) (Perotti <i>et al.</i> 2020) (Wong <i>et al.</i> 2022) All the above papers make similar proposals so have been combined into one entry (Mitchell and Bartsch 2020) suggest common ragweed as a target	1	2	3	4	5	6	7	8	9	Proposals from several funded CSIRO researchers including at the University of Queensland, Australia, and researchers at Rothamsted Research UK	Various funders including BBSRC and CSIRO
Lupinus arboreus Yellow bush lupin/tree Iupin Lychnis coronia 'Alba' Rose campion Setaria glauça														

	Species Geographic range	Intended direct effect Intended use (as stated by authors)	Type of gene drive (our categories) Developer's name for gene drive system	Publication(s) where research is described	How close is strain/system to experimental releases in the wild?					n		Project leader(s) Institution	Funders	
31	<i>Myrtaceae</i> family (including <i>Eucalyptus</i> <i>spp</i> .)	Population modification	NA	(Barrett <i>et al.</i> 2019)			8	9	D.M. Gardiner CSIRO Agriculture and Food, Australia	CSIRO				
		To modify wild populations in Australia to render them resistant to the fungal pathogen <i>Puccinia psidii</i>	The proposals do not focus on any particular type of gene drive											

Key to technology levels

- **1** Gene drive proposed: a proposal has been put forward in the scientific literature or from another academic source (e.g. funding body)
- 2 Gene drive proposed with supporting modelling work, or preliminary laboratory work funded: a proposal has been made in the scientific literature supported by modelling work, or preliminary laboratory work has been funded but has not yet been published
- 3 Preliminary laboratory work published: laboratory research relevant to gene drive construction published (e.g. developing molecular biology methods) with possibility or intention to construct gene drive stated
- 4 Research on gene drive construction funded: research on gene drive construction has been funded, but no results yet published OR results published showing non-functional gene drives, or similar very limited progress
- 5 Limited proof of concept: Published results show a gene drive is to some extent functional, however there are outstanding technical issues such as resistance or low efficiency
- **Laboratory proof of concept:** Taking published results at face value, the system works effectively in the laboratory

Non-insects- scaled up trials: Data published from scaled up trials in contained environments, offering a more accurate simulation of conditions in natural environment

Insects - large cage trials: Data published on trials in large cages, offering a more accurate simulation of conditions in natural environment

- **Potential further contained trials:** After large cage trials (or other scaled up trials), it is not currently clear what further trials may take place prior to experimental releases. One possibility is trials in outdoor cages
 - **Experimental releases in natural environment:** Field trials are underway with releases in the natural environment. This does not indicate that the technology has been shown to be effective or safe
- **Abandoned project:** Research to construct a gene drive has been carried out, but has been unsuccessful and to our knowledge is no longer active

Abbreviations for funders and other organisations

Allen	Allen Frontiers Group
ARC	Australian Research Council
Banting	Banting Research Foundation
BARD	United States—Israel Binational Agricultural
	Research and Development Fund
BBSRC	UK Biotechnology and Biological Sciences Research Council
Bioheritage NZ	New Zealand Bio-heritage National Science Challenge
CFI	Canada Foundation for Innovation
CIHR	Canadian Institutes of Health Research
CSC	Commonwealth Scholarship Commission
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DARPA	US Defense Advanced Research Projects Agency
DOE	US Department of Energy
ENTRF	Environment and Natural Resources Trust Fund
ERC	European Research Council
ESEB	European Society for Evolutionary Biology
Greenwall	Greenwall foundation
Kinship	Kinship foundation
NCI	US National Cancer Institute
NIDDK	US National Institute of Diabetes and Digestive and Kidney Diseases
NIH	US National Institutes of Health
NSERC Canada	Natural Sciences and Engineering Research Council of Canada
NSF	US National Science Foundation
Packard	David and Lucile Packard Foundation
Pew	Pew Charitable Trust
Predator Free NZ	New Zealand Predator Free Program
Rainwater	Rainwater Foundation
Sloan	Sloan Foundation
SNSF	Swiss National Science Foundation
TATA	TATA trusts
TIGS UCSD	Tata Institute for Genetics and Society University of California San Diego
UCI	University of California Irvine
USC	University of South Carolina
USDA	US Department of Agriculture
Wyss Institute	Wyss Institute for Biologically Inspired Engineering

References

- AAAS. 2016. "MaxMind gives \$100,000 to GW to create gene drive to eliminate schistosomiasis." accessed 17/10/2022. https://www.eurekalert.org/news-releases/645084.
- Aguilera, M. 2017 "UC San Diego Researchers Join \$14.9 Million Fight Against Disease-transmitting Mosquitoes ", accessed 08/04/2019. https://ucsdnews.ucsd.edu/index.php/pressrelease/uc_san_diego_researchers_join_14.9_million_fight_against_disease
- Asad, M., D. Liu, J. Li, J. Chen, and G. Yang. 2022. "Development of CRISPR/Cas9-Mediated Gene-Drive Construct Targeting the Phenotypic Gene in Plutella xylostella." *Front Physiol* 13:938621. doi: 10.3389/fphys.2022.938621.
- AustralianWildlifeConservancy. 2022. "Feral Cat and Fox Control." accessed 13/10/2022. https://www.australianwildlife.org/ our-work/feral-cat-and-fox-control/.
- Backus, G. A., and K. 2016. "Genetic engineering to eradicate invasive mice on islands: modeling the efficiency and ecological impacts." *Ecosphere* 7 (12):e01589. doi: https://doi.org/10.1002/ecs2.1589.
- Bakerlee, C. W., A. N. Nguyen Ba, Y. Shulgina, J. I. Rojas Echenique, and M. M. Desai. 2022. "Idiosyncratic epistasis leads to global fitness-correlated trends." *Science* 376 (6593):630-635. doi: 10.1126/science.abm4774.
- Barrett, L. G., M. Legros, N. Kumaran, D. Glassop, S. Raghu, and D. M. Gardiner. 2019. "Gene drives in plants: opportunities and challenges for weed control and engineered resilience." *Proc Biol Sci* 286 (1911):20191515. doi: 10.1098/ rspb.2019.1515.
- Bengsen, A.J., D. Algar, G. Ballard, T. Buckmaster, S. Comer, P. J. S. Fleming, J. A. Friend, M. Johnston, H. McGregor, K. Moseby, F. Zewe. 2015. "Feral cat home-range size varies predictably with landscape productivity and population density" *J Zool* 298 (2): 112-120 https://doi.org/10.1111/jzo.12290
- Birand, A., P. Cassey, J. V. Ross, J. C. Russell, P. Thomas, and T. A. A. Prowse. 2022. "Gene drives for vertebrate pest control: Realistic spatial modelling of eradication probabilities and times for island mouse populations." *Mol Ecol* 31 (6):1907-1923. doi: 10.1111/mec.16361.
- Birand, A., P. Cassey, J. V. Ross, P. Q. Thomas, and T. A. A. Prowse. 2022. "Scalability of genetic biocontrols for eradicating invasive alien mammals." *Neobiota* 74:93-103. doi: 10.3897/neobiota.74.82394.
- Brown, E. A., S. R. Eikenbary, and W. G. Landis. 2022. "Bayesian network-based risk assessment of synthetic biology: Simulating CRISPR-Cas9 gene drive dynamics in invasive rodent management." *Risk Anal*. doi: 10.1111/risa.13948.
- Brown, K. 2021. "New biocontrol research to help prevent mice plagues." accessed 31/10/2022. adelaide.edu.au/newsroom/ news/list/2021/06/04/new-biocontrol-research-to-help-prevent-mice-plagues.
- Buchthal, J., S. W. Evans, J. Lunshof, S. R. Telford, 3rd, and K. M. Esvelt. 2019. "Mice Against Ticks: an experimental community-guided effort to prevent tick-borne disease by altering the shared environment." *Philos Trans R Soc Lond B Biol Sci* 374 (1772):20180105. doi: 10.1098/rstb.2018.0105.
- Campbell, K. J., J.R. Saah, P.R. Brown, J. Godwin, G.R. Howald, A. Piaggio, P. Thomas, D.M. Tompkins, D. Threadgill, J. Delborne, D.M. Kanavy, T. Kuiken, H. Packard, M. Serr, and A. Shiels. 2019. "A potential new tool for the toolbox: assessing gene drives for eradicating invasive rodent populations." USDA National Wildlife Research Center Staff Publications. 2235.
- Cassola, F. 2016. *Peromyscus leucopus* (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T16669A115136270. URL accessed 30/01/2023 https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS. T16669A22360579.en.
- Castle, A. R., S. Wohlgemuth, L. Arce, and D. Westaway. 2022. "Investigating CRISPR/Cas9 gene drive for production of disease-preventing prion gene alleles." *PLoS One 17* (6):e0269342. doi: 10.1371/journal.pone.0269342.
- Champer, S. E., N. Oakes, R. Sharma, P. García-Díaz, J. Champer, and P. W. Messer. 2021. "Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework." *PLoS Comput Biol* 17 (12):e1009660. doi: 10.1371/journal.pcbi.1009660.
- Cooper, A. C., M. E. Woodcock, V. Kamalakkannan, R. J. Capon, T. Tanja Strive, and M. L. Tizard. 2020. "Successful gene editing in the cane toad." UC Davis Transgenic Animal Research Conference XII, Granlibakken Conference Center and Resort.
- Dearden, P., N. Gemmell, O. R. Mercier, P. Lester, M. J. Scott, R. Newcomb, T. Buckley, J. Jacobs, S. Goldson, and D. R. Penman. 2018. "The potential for the use of gene drives for pest control in New Zealand: a perspective." *J R Soc N Z* 48 (4):225-244. doi: 10.1080/03036758.2017.1385030.
- DiCarlo, J. E., A. Chavez, S. L. Dietz, K. M. Esvelt, and G. M. Church. 2015. "Safeguarding CRISPR-Cas9 gene drives in yeast." *Nat Biotechnol* 33 (12):1250-1255. doi: 10.1038/nbt.3412.
- Du, X., D. P. McManus, J. D. French, M. K. Jones, and H. You. 2021. "CRISPR/Cas9: A new tool for the study and control of helminth parasites." *Bioessays* 43 (1):e2000185. doi: 10.1002/bies.202000185.
- Esvelt, K. M., Smidler, A. L., Catteruccia, F., & Church, G. M. (2014). Concerning RNA-guided gene drives for the alteration of wild populations. *eLife*, 3, e03401. https://doi.org/10.7554/eLife.03401
- Esvelt, K. 2017a. "Daisy drive: Safe Genes research plan." URL accessed 02/12/2022 https://v3.pubpub.org/pub/daisy-driveresearch-plan
- Esvelt, K. 2017b. "Safe Genes: Daisy Drive Statement of Work." URL accessed 25/11/2022 <u>https://responsive.pubpub.org/</u> pub/safe-genes-daisy-drive-statement-of-work/release/1
- Faber, N. R., A. B. Meiborg, G. R. McFarlane, G. Gorjanc, and B. A. Harpur. 2021. "A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor." *Apidologie* 52 (6):1112-1127. doi: 10.1007/s13592-021-00891-5.
- Faber, N. R., G. R. McFarlane, R. C. Gaynor, I. Pocrnic, C. B. A. Whitelaw, and G. Gorjanc. 2021. "Novel combination of CRISPR-based gene drives eliminates resistance and localises spread." *Sci Rep* 11 (1):3719. doi: 10.1038/s41598-021-83239-4.
- Ferreira-Martins, D., J. Champer, D. W. McCauley, Z. Zhang, and M. F. Docker. 2021. "Genetic control of invasive sea lamprey in the Great Lakes." J Gt Lakes Res 47:S764-S775. doi: 10.1016/j.jglr.2021.10.018.
- Forner, J., D. Kleinschmidt, E. H. Meyer, A. Fischer, R. Morbitzer, T. Lahaye, M. A. Schöttler, and R. Bock. 2022. "Targeted introduction of heritable point mutations into the plant mitochondrial genome." *Nat Plants* 8 (3):245-256. doi: 10.1038/s41477-022-01108-y.

- Gardiner, D. M., A. Rusu, L. Barrett, G. C. Hunter, and K. Kazan. 2020. "Can natural gene drives be part of future fungal pathogen control strategies in plants?" *New Phytol* 228 (4):1431-1439. doi: 10.1111/nph.16779.
- Gierus, L., A. Birand, M. D. Bunting, G. I. Godahewa, S. G. Piltz, K. P. Oh, A. J. Piaggio, D. W. Threadgill, J. Godwin, O. Edwards, P. Cassey, J. Ross, T. A. A. Prowse, and P. Q. Thomas. 2022. "Leveraging a natural murine meiotic drive to suppress invasive populations." *Proc Natl Acad Sci U S A* 119(46):e2213308119. doi: 10.1073/pnas.2213308119.]
- Godwin, J., M. Serr, S. K. Barnhill-Dilling, D. V. Blondel, P. R. Brown, K. Campbell, J. Delborne, A. L. Lloyd, K. P. Oh, T. A. A. Prowse, R. Saah, and P. Thomas. 2019. "Rodent gene drives for conservation: opportunities and data needs." *Proc Biol Sci* 286 (1914):20191606. doi: 10.1098/rspb.2019.1606.
- Goeckel, M. E., E. M. Basgall, I. C. Lewis, S. C. Goetting, Y. Yan, M. Halloran, and G. C. Finnigan. 2019. "Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiae." *Fungal Biol Biotechnol* 6:2. doi: 10.1186/s40694-019-0065-x.
- Government of Ontario, 2018. Sea Lamprey. URL accessed 07/03/2023 https://www.ontario.ca/page/sea-lamprey
- Grewelle, R. E., J. Perez-Saez, J. Tycko, E. K. O. Namigai, C. G. Rickards, and G. A. De Leo. 2022. "Modeling the efficacy of CRISPR gene drive for snail immunity on schistosomiasis control." *PLoS Negl Trop Dis* 16 (10):e0010894. doi: 10.1371/journal.pntd.0010894.
- Grunwald, H. A., V. M. Gantz, G. Poplawski, X. S. Xu, E. Bier, and K. L. Cooper. 2019. "Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline." *Nature* 566 (7742):105-109. doi: 10.1038/s41586-019-0875-2.
- Grunwald, H. A., A. J. Weitzel, and K. L. Cooper. 2022. "Applications of and considerations for using CRISPR-Cas9-mediated gene conversion systems in rodents." *Nat Protoc* 17 (1):3-14. doi: 10.1038/s41596-021-00646-7.
- Habib, M. R., S. Lv, D. Rollinson, X.-N. Zhou. 2020. "Invasion and Dispersal of Biomphalaria Species: Increased Vigilance Needed to Prevent the Introduction and Spread of Schistosomiasis" *Front Med (Lausanne)* 2021(8):614797 <u>https://doi.org/10.3389%2Ffmed.2021.614797</u>
- Halder, V., C. B. M. Porter, A. Chavez, and R. S. Shapiro. 2019. "Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans." *Nat Protoc* 14 (3):955-975. doi: 10.1038/s41596-018-0122-6.
- Hambrook, Jacob R., Abdullah A. Gharamah, Emmanuel A. Pila, Solomon Hussein, and Patrick C. Hanington. 2020. "Biomphalaria glabrata Granulin Increases Resistance to Schistosoma mansoni Infection in Several Biomphalaria Species and Induces the Production of Reactive Oxygen Species by Haemocytes." *Genes* 11 (1). doi: 10.3390/ genes11010038.
- Hoffmann, M. & Sillero-Zubiri, C. 2021. Vulpes vulpes (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2021: e.T23062A193903628. URL accessed on 30/01/2023 https://dx.doi.org/10.2305/IUCN. UK.2021-1.RLTS.T23062A193903628.en.
- Holman, L. 2019. "Evolutionary simulations of *Z* linked suppression gene drives." *Proc. Royal Soc. B* 286 (1912):20191070. doi: doi:10.1098/rspb.2019.1070.
- Hulme-Beaman A., D. Orton, T. Cucchi. 2021. "The origins of the domesticate brown rat (*Rattus norvegicus*) and its pathways to domestication" Anim Front 11(3):78–86 https://doi.org/10.1093/af/vfab020
- Kumaran, N., A. Choudhary, M. Legros, A. W. Sheppard, L. G. Barrett, D. M. Gardiner, and S. Raghu. 2020. "Gene technologies in weed management: a technical feasibility analysis." *Curr Opin Insect Sc* 38:6-14. doi: 10.1016/j. cois.2019.12.003.
- Khlyap L., Glass G., M. Kosoy. 2012. Rodents in urban ecosystems of Russia and the USA Chapter 1. In Rodents: Habitat, Pathology and Environmental Impact. Ed. Triunveri A., Scalise D. 1-22 Nova Science Pub Inc.
- Leitschuh, C. M., D. Kanavy, G. A. Backus, R. X. Valdez, M. Serr, E. A. Pitts, D. Threadgill, and J.Godwin. 2018. "Developing gene drive technologies to eradicate invasive rodents from islands." *J Responsible Innov* 5 (sup1):S121-S138. doi: 10.1080/23299460.2017.1365232.
- Lewis, I. C., Y. Yan, and G. C. Finnigan. 2021. "Analysis of a Cas12a-based gene-drive system in budding yeast." Access microbiology 3 (12):000301-000301. doi: 10.1099/acmi.0.000301.
- Li, J., O. Aidlin Harari, A. L. Doss, L. L. Walling, P. W. Atkinson, S. Morin, and B. E. Tabashnik. 2020. "Can CRISPR gene drive work in pest and beneficial haplodiploid species?" *Evol Appl* 13 (9):2392-2403. doi: 10.1111/eva.13032.
- Lohmar, J. M., N. A. Rhoades, T. M. Hammond, and D. W. Brown. 2022. "Gene drive by Fusarium SKC1 is dependent on its competing allele." *Fungal Genetics and Biology* 163:8. doi: 10.1016/j.fgb.2022.103749.
- Lohmar, J. M., N. A. Rhoades, T. N. Patel, R. H. Proctor, T. M. Hammond, and D. W. Brown. 2022. "A-to-I mRNA editing controls spore death induced by a fungal meiotic drive gene in homologous and heterologous expression systems." *Genetics*. doi: 10.1093/genetics/iyac029.
- Long, A. D., J. Baldwin-Brown, Y. Tao, V. J. Cook, G. Balderrama-Gutierrez, R. Corbett-Detig, A. Mortazavi, and A. G. Barbour. 2019. "The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections." *Sci Adv* 5 (7):eaaw6441. doi: 10.1126/sciadv.aaw6441.
- Maier, T., N. J. Wheeler, E. K. O. Namigai, J. Tycko, R. E. Grewelle, Y. Woldeamanuel, K. Klohe, J. Perez-Saez, S. H. Sokolow, G. A. De Leo, T. P. Yoshino, M. Zamanian, and J. Reinhard-Rupp. 2019. "Gene drives for schistosomiasis transmission control." *PLoS Negl Trop Dis* 13 (12):e0007833. doi: 10.1371/journal.pntd.0007833.
- Manser, A., S. J. Cornell, A. Sutter, D. V. Blondel, M. Serr, J. Godwin, and T. A. R. Price. 2019. "Controlling invasive rodents via synthetic gene drive and the role of polyandry." *Proc Biol Sci* 286 (1909):20190852. doi: 10.1098/ rspb.2019.0852.
- McFarlane, G. R., G. Gorjanc, C. Proudfoot, C. B. A. Whitelaw, and S. G. Lillico. 2020. "Developing a CRISPR-Cas9 gene drive for pest control." UC Davis Transgenic Animal Research Conference XII, Granlibakken Conference Center and Resort.
- McFarlane, G. R., C. B. A. Whitelaw, and S. G. Lillico. 2018. "CRISPR-Based Gene Drives for Pest Control." *Trends Biotechnol* 36 (2):130-133. doi: 10.1016/j.tibtech.2017.10.001.
- Minnesota Aquatic Invasive Species Research Centre. 2022. "Genetic Control of Invasive Fish Species." accessed 01/12/2022. https://maisrc.umn.edu/genetic-carp.
- Mitchell, H. J., and D. Bartsch. 2020. "Regulation of GM Organisms for Invasive Species Control." *Front Bioeng Biotechnol* 7. doi: 10.3389/fbioe.2019.00454.
- Moro, D., M. Byrne, M. Kennedy, S. Campbell, and M. Tizard. 2018. "Identifying knowledge gaps for gene drive research to control invasive animal species: The next CRISPR step." *Glob Ecol Conserv* 13:e00363. doi: 10.1016/j.gecco.2017.e00363.

- Musser, G., Hutterer, R., Kryštufek, B., Yigit, N. & Mitsainas, G. 2021. *Mus musculus* (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2021: e.T13972A197519724. URL accessed 30/01/2023 <u>https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T13972A197519724.en</u>. Accessed on 30 January 2023.
- (NASEM 2016) Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible Conduct; Board on Life Sciences; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values. Washington (DC): National Academies Press (US); July 28, 2016.
- NatureServe. 2013. *Petromyzon marinus*. URL accessed 07/03/2023 The IUCN Red List of Threatened Species 2013: e.T16781A18229984. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T16781A18229984.en. Accessed on 07 March 2023.
- Neve, P. 2018. "Gene drive systems: do they have a place in agricultural weed management?" *Pest Manag Sci* 74 (12):2671-2679. doi: https://doi.org/10.1002/ps.5137.
- Oh, K. P., A. B. Shiels, L. Shiels, D. V. Blondel, K. J. Campbell, J. R. Saah, A. L. Lloyd, P. Q. Thomas, F. Gould, Z. Abdo, J. R. Godwin, and A. J. Piaggio. 2021. "Population genomics of invasive rodents on islands: Genetic consequences of colonization and prospects for localized synthetic gene drive." *Evol Appl* 14 (5):1421-1435. doi: 10.1111/eva.13210.
- Perotti, V. E., A. S. Larran, V. E. Palmieri, A. K. Martinatto, and H. R. Permingeat. 2020. "Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies." *Plant Sci* 290:110255. doi: 10.1016/j.plantsci.2019.110255.
- Peter, J., M. De Chiara, A. Friedrich, J. X. Yue, D. Pflieger, A. Bergstrom, A. Sigwalt, B. Barre, K. Freel, A. Llored, C. Cruaud, K. Labadie, J. M. Aury, B. Istace, K. Lebrigand, P. Barbry, S. Engelen, A. Lemainque, P. Wincker, G. Liti, and J. Schacherer. 2018. "Genome evolution across 1,011 Saccharomyces cerevisiae isolates." *Nature* 556 (7701):339-344. doi: 10.1038/s41586-018-0030-5.
- Pfitzner, C., M. A. White, S. G. Piltz, M. Scherer, F. Adikusuma, J. N. Hughes, and P. Q. Thomas. 2020. "Progress Toward Zygotic and Germline Gene Drives in Mice." *Crispr j* 3 (5):388-397. doi: 10.1089/crispr.2020.0050.
- Prowse, T. A. A., P. Cassey, J. V. Ross, C. Pfitzner, T. A. Wittmann, and P. Thomas. 2017. "Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates." *Proc Biol Sci* 284 (1860). doi: 10.1098/ rspb.2017.0799.
- Prowse, T. A., F. Adikusuma, P. Cassey, P. Thomas, and J. V. Ross. 2019. "A Y-chromosome shredding gene drive for controlling pest vertebrate populations." *Elife* 8. doi: 10.7554/eLife.41873.
- Roggenkamp, E., R. M. Giersch, M. N. Schrock, E. Turnquist, M. Halloran, and G. C. Finnigan. 2018. "Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae." *G3-Genes Genom Genet* 8 (3):999-1018. doi: 10.1534/g3.117.300557.
- RoslinInstitute. 2017. "Gene experts set to tackle pest control." Last Modified 06/12/17, accessed 09/04/2019. https://www.ed.ac.uk/roslin/news-events/archive/2017/gene-experts-tackle-pest-control.
- Ruedas, L., Heaney, L. & Molur, S. 2016. Rattus exulans (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T19330A115146549. URL accessed 07/03/2023 https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS. T19330A22440938.en.
- Shapiro, R. S., A. Chavez, C. B. M. Porter, M. Hamblin, C. S. Kaas, J. E. DiCarlo, G. Zeng, X. Xu, A.V. Revtovich, N. V. Kirienko, Y. Wang, G. M. Church, and J. J. Collins. 2018. "A CRISPR–Cas9-based gene drive platform for genetic interaction analysis in Candida albicans." *Nat Microbiol* 3 (1):73-82. doi: 10.1038/s41564-017-0043-0.
- Solís, F., R. Ibáñez, G. Hammerson, B. Hedges, A. Diesmos, M. Matsui, J.-M. Hero, S. Richards, L. Coloma, S. Ron, E. La Marca, J. Hardy, R. Powell, F. Bolaños, G. Chaves, P. Ponce. 2009. *Rhinella marina*. The IUCN Red List of Threatened Species 2009: e.T41065A10382424. URL accessed 30/01/2023 https://dx.doi.org/10.2305/IUCN. UK.2009-2.RLTS.T41065A10382424.en.
- Sudweeks, J., B. Hollingsworth, D. V. Blondel, K. J. Campbell, S. Dhole, J. D. Eisemann, O. Edwards, J. Godwin, G. R. Howald, K. P. Oh, A. J. Piaggio, T. A. A. Prowse, J. V. Ross, J. R. Saah, A. B. Shiels, P. Q. Thomas, D. W. Threadgill, M. R. Vella, F. Gould, and A. L. Lloyd. 2019. "Locally Fixed Alleles: A method to localize gene drive to island populations." *Sci Rep* 9 (1):15821. doi: 10.1038/s41598-019-51994-0.
- Tablado, Z., E. Revilla, F. Palomares. 2009. "Breeding like rabbits: global patterns of variability and determinants of European wild rabbit reproduction" *Ecography* 32(2):310-320 <u>https://doi.org/10.1111/j.1600-0587.2008.05532.x</u>
- Thresher, A. C. 2022. "When Extinction Is Warranted: Invasive Species, Suppression-Drives and the Worst-Case Scenario." *Ethics Policy Environ* 25 (2):132-152. doi: 10.1080/21550085.2020.1848197.
- Urquhart, A. S., and D. M. Gardiner. "A Natural Fungal Gene Drive Enacts Killing via DNA Disruption." *Mbio*:11. doi: 10.1128/ mbio.03173-22.
- Vacura, K., M. Smanski, K. Cheeseman, C. Droppo, L. Lagoon, and P. Venturelli. 2018. "Biological assessment of lionfish pterois volitans control via CRISPR-Cas9 gene drive technology." Midwest Fish and Wildlife Conference, Milwaukee, Wisconsin 31/1/2018.
- Weitzel, A. J., H. A. Grunwald, C. Weber, R. Levina, V. M. Gantz, S. M. Hedrick, E. Bier, and K. L. Cooper. 2021. "Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline." *PLoS Biol* 19 (12):e3001478. doi: 10.1371/journal.pbio.3001478.
- Wong, A. C. S., K. Massel, Y. Lam, J. Hintzsche, and B. S. Chauhan. 2022. "Biotechnological Road Map for Innovative Weed Management." *Front Plant Sci* 13:887723. doi: 10.3389/fpls.2022.887723.
- Yamaguchi, N., Kitchener, A., Driscoll, C. & Nussberger, B. 2015. *Felis silvestris*. The IUCN Red List of Threatened Species 2015: e.T60354712A50652361. URL accessed 07/03/2023 https://www.iucnredlist.org/species/pdf/50652361
- Yan, Y., and G. C. Finnigan. 2018. "Development of a multi-locus CRISPR gene drive system in budding yeast." *Sci Rep* 8:17277. doi: 10.1038/s41598-018-34909-3.
- York, J. R., R. E. Thresher, and D. W. McCauley. 2021. "Applying functional genomics to the study of lamprey development and sea lamprey population control." *J Gt Lakes Res* 47:S639-S649. doi: 10.1016/j.jglr.2020.03.010.
- Zhang, T., M. Mudgett, R. Rambabu, B. Abramson, X. Dai, T. P. Michael, and Y. Zhao. 2021. "Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis." *Nat Commun* 12 (1):3854. doi: 10.1038/s41467-021-24195-5.
- Zhang, T., M. Mudgett, R. Rambabu, B. Abramson, X. Dai, T. P. Michael, and Y. Zhao. 2022. "Retraction Note: Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis." *Nat Commun* 13 (1):3270. doi: 10.1038/s41467-022-31001-3.
- Zhang, Z. X., Y. Z. Wang, Y. S. Xu, X. M. Sun, and H. Huang. 2021. "Developing GDi-CRISPR System for Multi-copy Integration in Saccharomyces cerevisiae." *Appl Biochem Biotechnol* 193 (7):2379-2388. doi: 10.1007/s12010-021-03532-w.

Methodology

Literature searches

Literature searches for 2020 through to the 31 December 2022 were carried out using the Web of Science database and the search term 'gene drive'. Literature searches for 2019 and previous years were carried out with the PubMed database using the same search term. Relevant journal articles were identified by systematically screening titles and abstracts from the search outputs. Press releases from academic institutions and other relevant materials on the web were identified using appropriate web searches (e.g. searching for the names of group leaders, target species, and the term 'gene drive'). We recognise that all relevant material on the web may not have been identified.

Criteria for inclusion

<u>Laboratory research and modelling</u> on gene drives in non-insect species as reported in the academic literature and other sources such as press releases from funders and universities, have been included. <u>Proposals</u> for gene drives in non-insect targets as identified from the natural sciences literature are included. <u>Proposals</u> deriving from other academic literature (such as literature relating to policy or ethics) are included at our discretion, for example if such proposals designate novel targets.

Basis for generating entries in table

Broadly, each entry in the table describes development of a particular gene drive concept in a specific target species or group, as described in the relevant literature. In some cases where multiple options are considered in a single publication, multiple proposed gene drives are described in a single entry row (generally these are early-stage proposals or modelling studies). The 'project leader' is identified as the last author on the publications describing the research or proposals.

Basis for ordering entries

Entries are grouped taxonomically. Entries for research in house mice are grouped according to the type of gene drive proposed. Entries within other species or taxonomic groups are sorted firstly according to how far research has progressed, and secondly by year of publication.